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Abstract

This paper presents the first machine learning approach to the resolution of co-referential
relations between nominal constituents in Dutch. Based on the hypothesis that different
types of information sources contribute to a correct resolution of different types (pronomi-
nal, proper noun and common noun) of co-referential links, we propose a modular approach
in which a separate module is trained per NP type. We present a thorough comparison of
two machine learning techniques, a lazy learner and an eager learning approach, trained on
the modular tasks as well as on the undecomposed task. In addition, we show that by post-
processing the resulting co-reference chains by means of a string-edit distance correction
mechanism, we can avoid some unlikely local chainings and thereby improve precision.
Lacking comparative results for Dutch, we also report results on the English MUC-6 and
MUC-7 data sets, which are widely used for evaluation.

1 Introduction

This paper is concerned with the automatic resolution of co-reference using ma-
chine learning techniques. Co-reference can be considered as the act of using a
referring expression to point to some discourse entity. Written and spoken texts
contain a large number of co-referential relations and a good text understand-
ing largely depends on the correct resolution of these relations. Machine learn-
ing approaches have become increasingly popular for this problem. In a typi-
cal machine learning approach to co-reference resolution, information on pairs
of NPs is represented in a set of feature vectors. Unsupervised learning tech-
niques, e.g. Cardie and Wagstaff (1999), view co-reference resolution as a clus-
tering task of combining noun phrases into equivalence classes. Most learning
approaches to co-reference resolution, however, are supervised techniques, which
make use of the C4.5 decision tree learner (Quinlan 1993) as in Aone and Bennett
(1995), McCarthy (1996) and Soon, Ng and Lim (2001) or the RIPPER rule learner
(Cohen 1995) as in Ng and Cardie (2002).

In this paper, we aim to investigate the following issues. In a set of cross-
validation experiments, we investigate whether the use of a modular approach in
which one learning system is developed separately for pronouns, proper nouns,
and common nouns, performs better than a global approach in which the learner
is trained on all available data. Furthermore, whereas most existing learning ap-
proaches to co-reference resolution can be described as eager learning approaches,
we investigate in this paper how a lazy learning approach tackles the problem of
co-reference resolution. We present a comparison of two machine learning tech-
niques on the task of co-reference resolution: the lazy learning implementation
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TIMBL (Daelemans, Zavrel, van der Sloot and van den Bosch 2002) 1 and the eager
rule induction method RIPPER (Cohen 1995). The learning biases of these two ap-
proaches provide extremes in the eagerness dimension in ML (the degree to which
a learning algorithm abstracts from the training data in forming a hypothesis).
Based on the observations reported in (Hoste, Hendrickx, Daelemans and van den
Bosch 2002, Daelemans and Hoste 2002, Daelemans, Hoste, De Meulder and
Naudts 2003a, Decadt, Hoste, Daelemans and van den Bosch 2004, Hoste 2005),
which show that a proper comparative experiment requires extensive optimization
and that the performance increase obtained by this optimization is considerable, we
perform an extensive feature selection and parameter optimization on both learning
methods using a genetic algorithm. These results are contrasted with the default
results of both learners.

We pay additional attention to correcting errors in the co-reference chains pro-
duced by the system. Since decisions on chaining elements are made pairwise,
without coordination between different decisions for other pairs that may or may
not be part of the same larger chain, a full chain can contain some stray elements
that need to be deleted from the chain. We develop a post-processor that compares
each produced chain to a gold-standard lexicon of chains from the training mate-
rial, finds a nearest match in terms of Levenshtein distance, and decides to delete
certain stray elements if the nearest match suggests such a deletion. This correc-
tion method, adopted from spelling correction, assumes that chains are represented
as a sequence of symbols from a small alphabet. We show that a simple alphabet
encoding the three different types of NPs and intermediate non-chaining elements
as four different symbols attains a modest but noticable boost of 2.5 points on the
system’s precision.

The remainder of the paper is organised as follows. Section 2 introduces the
annotated corpora for Dutch and English. It discusses the preparation of the data
sets, including the preprocessing of the data, the selection of positive and neg-
ative instances and the construction of three different NP-type data sets instead
of one single data set. Section 3 deals with the problem of selection of informa-
tion sources. Section 4 presents and evaluates the two machine learning packages
which we used in our experiments. Both default and optimized results are pro-
vided for the cross-validation data. Section 5 is devoted to the testing procedure
and results. Section 6 reports on our experiments with Levenshtein-based chain
correction post-processing. We conclude with some general observations in Sec-
tion 7.

2 Construction of the data sets

For the experiments, we selected all noun phrases in the English MUC-6 (MUC-
6 1995) and MUC-7 (MUC-7 1998) corpora and the Dutch KNACK-2002 corpus
(Hoste 2005). For both MUC-6 and MUC-7, 30 documents annotated with co-
reference information were used as training documents. The MUC-6 and MUC-7
training sets contain 1,644 and 1,905 anaphoric NPs, respectively. The test sets for
1Available from http://ilk.uvt.nl
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MUC-6 and MUC-7 contain 30 documents (1,627 anaphoric NPs) and 20 docu-
ments (1,311 anaphoric NPs), respectively.

Lacking a substantial Dutch corpus of anaphoric relations between different
types of NPs, including named entities, definite and indefinite NPs and pronouns,
we annotated a corpus ourselves. The corpus is based on KNACK, a Flemish
weekly magazine with articles on national and international current affairs; 267
documents were annotated. For the experiments, 50 texts were used, of which 25
for training and 25 for testing. The KNACK-2002 training and test set contain
1,688 and 1,326 anaphoric NPs, respectively.

2.1 Preprocessing

The following preprocessing steps were taken. First, tokenisation was performed
to split non-abbreviating punctuation from word tokens. The tokenization for
both Dutch and English was performed by a rule-based system using regular ex-
pressions. For the recognition of names, a memory-based named entity recogni-
tion approach (De Meulder and Daelemans 2003) was used, which distinguishes
between persons, organisations and locations. Part-of-speech tagging and text
chunking was performed by the memory-based tagger MBT (Daelemans, Zavrel,
van den Bosch and van der Sloot 2003b). For the grammatical relation finding
which determines which chunk has which grammatical relation to which ver-
bal chunk (e.g. subject, object, etc.) a memory-based relation finder was used
(Buchholz 2002, Tjong Kim Sang, Daelemans and Höthker 2004) for both lan-
guages. For Dutch we also performed a machine learned morphological analysis
(De Pauw, Laureys, Daelemans and Van Hamme 2004). Dutch features a more ex-
tensive inflection, conjugation and derivation system than English. An example is
the use of diminutive suffixes, such as the “tje” in “bureautje” (English: “small of-
fice”). Furthermore, also compounds had to be split into their components. Com-
pounding in Dutch can occur through concatenation as in “pensioenspaarfonds”
(English: “pension saving fund”) and through concatenation in combination with
the /s/ infix as in “bedrijfsstructuur” (English: “company structure”) or in combi-
nation with the /e<n>/ infix as in “studentenorganisatie” (English: “student orga-
nization”).

The information obtained through this preprocessing was then used in the con-
struction of the feature vectors for the learning techniques. On the basis of the pre-
processed texts, we selected positive and negative instances for the training data.
Positive instances were generated by combining each anaphor with each preced-
ing element in the co-reference chain (a set of noun phrases referring to the same
discourse entity). The negative instances were built by combining each anaphor
with each preceding NP which was not part of any co-reference chain, as well as
by combining each anaphor with each preceding NP which was part of another
co-reference chain. This yielded a highly skewed data set. For example, out of the
171,081 training instances in the MUC-6 data, only 6.6% were positive ones.
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2.2 One vs. three

Besides merging all NPs into one single train and test set (as for example Ng
and Cardie (2002) and Soon et al. (2001)), we also built 3 smaller datasets, each
specialized in one NP type (pronouns, proper nouns, and common nouns). This
resulted in a learning system for pronouns, one for named entities and a third
system for the other NPs.

The main motivation for this approach is that different information sources
play a role in the resolution of pronominal references than for example in the
resolution of references involving proper nouns. Example sentence (1) illustrates
the importance of string matching or aliasing in the resolution of proper nouns.
These features are less important for the resolution of the first co-referential link
between a pronoun and a common noun NP in example (2), but here information
on gender, number and distance is crucial.

(1) Eastern Air Proposes Date For Talks on Pay-Cut Plan. Eastern Airlines
executives notified union leaders (...) By proposing a meeting date, East-
ern moved one step closer toward reopening current high-cost contract
agreements with its unions.

(2) Union representatives who could be reached said they hadn’t decided
whether they would respond.

In order to test our hypothesis that three classifiers, each trained on one spe-
cific NP type, would perform better than one single classifier, we built the data
sets displayed in Table 1. The ‘Pronouns’ data set contains the NPs ending in a
personal, reflexive or possessive pronoun. The ‘Proper nouns’ data set contains
the NPs which have a proper noun as head, while the ‘Common nouns’ data set
contains all other NPs not in the two other categories. The fourth dataset is the
union of the former three datasets.

Additional motivation for the construction of three different data sets was found
in the results reported by Ng and Cardie (2002) and Strube, Rapp and Müller
(2002). Ng and Cardie (2002) calculated the performance of their system on pro-
nouns, proper nouns, and common nouns, and observed a low precision on com-
mon noun resolution (antecedents were found for many non-anaphoric common
nouns) and a high precision on pronoun and proper noun resolution. A similar ob-
servation was reported by Strube et al. (2002) when experimenting with applying
the C5.0 decision-tree induction algorithm (Quinlan 1993) to a corpus of Ger-
man texts. Their results show that the feature describing the form of the anaphor
(definite NP, indefinite NP, personal pronoun, demonstrative pronoun, possessive
pronoun, proper noun) is the most important. They furthermore show that the clas-
sifier performs poorly on definite NPs and demonstrative pronouns, moderately
on proper nouns and quite good on personal pronouns and possessive pronouns.
These different error rates reported for the different types of NPs are an additional
motivation for building more fine-grained data sets for each NP type.
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Table 1: Number of instances per NP type in the MUC-6/7 and KNACK-2002 training
corpora.

MUC-6
NP type positive negative
Pronouns 2,006 26,811
Proper nouns 5,901 68,634
Common nouns 3,359 64,370
Complete 11,266 159,815

MUC-7
NP type positive negative
Pronouns 2,705 28,952
Proper nouns 3,455 54,109
Common nouns 2,655 60,009
Complete 8,815 143,070

KNACK-2002
NP type positive negative
Pronouns 3,111 33,155
Proper nouns 2,065 31,370
Common nouns 1,281 31,394
Complete 6,457 95,919
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3 Information sources

3.1 Selected information sources

Several information sources contribute to a correct resolution of co-referential
relations: morphological, lexical, syntactic, semantic and positional informa-
tion and also world-knowledge. In order to come to a correct resolution of co-
referential relations, existing systems, e.g. (Fisher, Soderland, Mccarthy, Feng and
Lehnert 1995, Cardie and Wagstaff 1999, Soon et al. 2001, Strube et al. 2002),
use a combination of these information sources. For our co-reference resolution
system, we used a common set of features employed by most of the other machine
learning resolution systems, but we will also introduce some new features, espe-
cially semantic features, such as the hypernym and synonym features. This focus
on semantic features has also been recently reported in for example (Markert and
Nissim 2005) and (Ji, Westbrook and Grishman 2005). We will now continue with
a short description of the features used in the experiments. For a more detailed
description we refer to (Hoste 2005).

The feature vectors consist of a combination of positional features indicat-
ing the number of sentences or NPs between the anaphor and its possible an-
tecedent; morphological and lexical features, such as features which indicate
whether a given anaphor, its candidate antecedent or both are pronouns, proper
nouns, demonstrative or definite NPs; syntactic features which inform on the syn-
tactic function of the anaphor and its candidate antecedent and check for syntactic
parallelism; string-matching features which look for complete and partial matches;
and, finally, several semantic features.

For the semantic features, we took into account gazetteer lists with location
names, male and female person names and names of organizations. Furthermore,
we looked for female/male pronouns and for gender indicators such as ‘Mr.’, ‘Mrs.’
and ‘Ms.’. Further information for this feature for the two English corpora was also
extracted from the WordNet1.7 (Fellbaum 1998) synonyms and hypernyms. This
synonym and hypernym information is provided for each different sense of the
given input word, which is often ambiguous. In case of such an input word with
more than one possible sense, there were two possible options. The first option was
to use word sense disambiguation (WSD) to determine the contextual meaning of
a given noun (see for example Hoste et al. (2002)) and to look for a synonym for
this specific meaning of the noun. Due to the rather low accuracies on unrestricted
word sense disambiguation for English in the Senseval-2 and Senseval-3 tasks,
however, we decided not to use WSD for the construction of the semantic features.
For Senseval-2, for example, an official top score of 69.0% precision and recall
(Mihalcea 2002) was obtained. For Senseval-3, our own WSD system (Decadt et
al. 2004) outperformed all other systems, but it only reached a top performance of
65.2% precision and recall, which was merely 2.8% better than the WordNet most
frequent sense baseline. Therefore, we decided to leave the word ambiguous, and
tried to exploit this ambiguity in the construction of the semantic features.

The following semantic features were used for English:
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• semantic class of anaphor/antecedent (ambiguous) represents a concate-
nation of all semantic classes the anaphor or antecedent belong to. For exam-
ple, the noun ‘Washington’ can be a person, an organization and a location.

• semantic class of anaphor/antecedent (most frequent) gives the most fre-
quent semantic class. E.g. the noun ‘Washington’ is more frequently used
as a location.

• semantic class agreement (values: ‘male’, ‘female’, ‘incomp’, ‘person’,
‘object’, ‘date’, ‘loc’, ‘no’, ‘na’). If the matched constituents are both male
or both female, the value of this feature is set to ‘male’ and ‘female’, respec-
tively. If one of the constituents is of the male gender, whereas the other
constituent is female, or vice versa, the feature is set to ‘incomp’. If both
NPs are persons, but it is not possible to determine the gender of one of the
NPs or of both, the feature takes as value ‘person’. If both constituents are
an object, a date or a location, the feature is set to ‘object’, ‘date’ and ‘loc’,
respectively. If both NPs do not agree on one of the preceding categories,
the feature value is set to ‘no’. If it is not possible to determine the semantic
class of one or both of the constituents, the feature takes as value ‘na’. Since
this feature already encapsulates gender information, we decided not to use
a distinct feature for gender.

• synonym (values: ‘yes’, ‘no’) looks for a noun in the anaphoric NP with
the same meaning as its possible antecedent. The following pairs from the
MUC-7 cross-validation data are examples of NPs which are labeled as syn-
onymic: “the three recent crashes” and “accidents”; “noise” and “a brief
unidentified sound”.

• hypernym (values: ‘yes’, ‘no’). A noun is a hypernym of another noun if the
concept it denotes is a superconcept of the concept the other noun denotes.
The following pairs from the MUC-7 cross-validation data are examples of
hypernymic NPs: “the fighter” and “the aircraft”; “the heavy-lift helicopter”
and “the craft”; “cockpit” and “that area”.

• named entity agreement (values: ‘I-ORG’, ‘I-PER’, ‘I-LOC’, ‘no’). This
feature identifies the exact agreement of the named entity type (organization,
person, location) of both NPs.

For Dutch, similar gazetteer list information could be used for the construction
of the first five semantic features for the proper nouns data. For the common nouns,
however, we were not able to trace a resource which could provide this type of
information. Lacking this type of information for the common noun NPs, we used
the Celex lexical data base (Baayen, Piepenbrock and van Rijn 1993) instead to
provide gender information for the head nouns of the common noun NPs. There
are three basic genders in Dutch: male, female and neuter. In addition, CELEX
also names female nouns which can be treated as male and nouns of which the
gender depends on the context in which they are used. This makes five feature
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values with gender information: ‘male’, ‘female’, ‘neuter’, ‘female(male)’, ‘male-
female’.

For the extraction of the synonym and hypernym features, we used all syn-
onyms and hypernyms in the Dutch EuroWordNet 2) output. The final semantic
feature, checking for named entity agreement, is based on the output of the Dutch
named entity recognizer. These three semantic features can take the same values
as the corresponding English features.

For none of our resolution systems we took into account discourse knowledge
(e.g. information on centering or focus, pointing at the most salient element in
discourse), or real-world knowledge.

3.2 Feature informativeness

We also calculated the informativeness of the different features. Table 2 shows the
previously discussed features for one potential antecedent pair in the sentence

(3) Frans Rombouts verdwijnt als hoofd van de Post (...) Zeker bij de Waalse
socialisten was hij niet erg geliefd meer.
Translation: Frans Rombouts leaves as head of the Post. Especially among
the Walloon socialists he lost popularity.

The last column in the table represents the gain ratio values of each feature
calculated on the KNACK-2002 corpus for the pronouns. Gain ratio (Quinlan
1993) is a feature-weighting metric which estimates for each feature, on the basis
of the training set, how much it contributes to predicting the class labels. This is
estimated by computing two entropy measurements; one of the full data set, and
one weighted average of the entropies of all subsets partitioned on all occurring
values at the particular feature. In order to avoid that features with many possible
values are favoured above features with fewer values, the entropy of the feature
values (expressed by split info si(i)) is used as a counter-factor:

wi =
H(C) −

∑
v∈V i P (v) × H(C|v)

si(i)

si(i) = −
∑

v∈V i P (v)log2P (v)

Due to the calculation of the gain ratio on pronominal anaphors only, some
features typically designed for proper noun and common noun anaphors have a
gain ratio of zero. Furthermore, the string-matching features and the semantic
class agreement features are assigned the highest gain ratio values.
2EuroWordNet: http://www.illc.uva.nl/EuroWordNet/
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Table 2: Feature vector for the combination of the anaphor “hij” with its candidate an-
tecedent “Frans Rombouts”. The last column gives the gain ratio for each feature calcu-
lated on the basis of the complete KNACK-2002 training corpus for the pronouns. Boldface
weights represent the four highest weights.

Feature value gain ratio ×100

distance in number of sentences: 3 0.32
distance in number of NPs: 6 0.39
left wd 3: Waalse 0.54
left wd 2: socialisten 0.68
left wd 1: was 0.53
left pos 3: ADJ(prenom,basis,met-e,stan) 0.17
left pos 2: N(soort,mv,basis) 0.20
left pos 1: WW(pv,verl,ev) 0.30
right wd 1: niet 0.63
right wd 2: erg 0.56
right wd 3: geliefd 0.57
right pos 1: BW() 0.27
right pos 2: ADJ(vrij,basis,zonder) 0.23
right pos 3: ADJ(vrij,basis,zonder) 0.18
distance is less than three sentences: no 1.72
the anaphor is a pronoun: yes 0.00
the antecedent is a pronoun: no 3.94
both are pronominal: no 3.94
anaphor is a demonstrative: no 0.58
anaphor is a definite NP: def yes 0.00
number agreement: num yes 3.42
complete match: no 14.22
partial match: no 13.86
named entity agreement: no 0.00
appositive: appo no 0.00
both are proper nouns: no 0.00
the antecedent is a proper noun: iproper yes 1.70
the anaphor is a proper noun: no 0.00
alias: no 0.00
semantic class of the anaphor: male 2.06
semantic class of the antecedent: male 3.62
semantic class agreement: male 11.41
syntactic function of the anaphor: SBJ 0.09
syntactic function of the antecedent: imm prec I-SBJ 1.37
are both SBJ/OBJ?: SBJ 0.64
both share the same head: no 13.86
synonym: no 0.00
hypernym: no 0.00
the anaphor is a pronoun refering to a
proper noun antecedent:

yes 1.70
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Figure 1: Example individual for a genetic algorithm population representing a RIPPER

experiment, encoding selected features (left) and algorithmic parameters (right).

Features

Number of 
optimization 

passes
Loss ratio   

0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1    0          0.33276559        0        1       2        3 

test
simplification

coverage

ordering
Class

Negative 
Hypothesis

Example

Values: 0,1

Parameters

4 A lazy and an eager learner

Having built the feature vectors, we experimented with two machine learning
techniques on the task of co-reference resolution: the lazy learning implemen-
tation TIMBL (Daelemans et al. 2002) and the eager rule induction method RIP-
PER (Cohen 1995). The motivation for the choice of a lazy or an eager learner
lies in their differences, e.g. in the understandability of learned models or abstrac-
tion from noise, two hallmarks of eager learning, versus the possibility of learning
from low-frequency or exceptional data points, a strong point of lazy learning
(Daelemans, van den Bosch and Zavrel 1999). We performed the validation ex-
periments using ten-fold cross-validation on the available training data. In order
to have an idea of the performance on the minority class, we evaluated the results
of our experiments in terms of precision, recall and F β=1 . The test results are
reported in Section 5.

In earlier work (Hoste et al. 2002, Daelemans and Hoste 2002, Daelemans et
al. 2003a, Decadt et al. 2004, Hoste 2005) we showed that a proper comparative
experiment requires extensive and methodologically correct optimization, and that
the performance increase obtained by this optimization has the potential to be con-
siderable. Therefore, for the comparative experiments between TIMBL and RIPPER
we used a genetic algorithm (henceforth: GA) to look for the optimal features and
parameters for both learning techniques. The principle behind GAs is quite sim-
ple: search starts from a population of individuals which all represent a candidate
solution to the problem to be solved (in our case, joint feature selection and param-
eter optimization). Figure 1 displays an example RIPPER individual represented by
particular values for all algorithm parameters and features.

A fitness function (for example an F-measure of the individual’s generalization
performance on validation material) is used to determine how good an individual is
at solving a problem. In order to combine effective solutions and maintain diversity
in the population, individuals are combined or mutated to breed new individuals.
After a number of generations, an optimal individual is selected. Table 3 gives an
overview of the default and optimized cross-validation results on the different data
sets. In this table, “All” refers to the classifiers trained on all data; “PPC” refers
to the combined output of the three separate classifiers for “Pronouns”, “Proper
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nouns”, and “Common nouns”.
Table 3 shows that the joint optimizaton of feature selection and parameter opti-

mization can cause large variation in the results of both classifiers. The bold-faced
results in the table show that optimization mainly wipes out the initial weaknesses
of both learners: the increase of F β=1 scores for TIMBL is mainly attained through
a marked increase of precision scores (mainly caused by a selection of the proper
features), whereas the increase of F β=1 scores for RIPPER is mainly due to the in-
crease of recall scores (mainly caused by adaptations to the loss ratio parameter).

Furthermore, we can observe that the performance differences inside one sin-
gle learning method can be much larger than the method-comparing performance
differences. The application of TIMBL and RIPPER on the MUC-6 “Pronouns” data
set, for example, leads to default F β=1 scores of 31.97 and 28.70 respectively; a
3% performance difference. In contrast, optimization within one single algorithm,
for example TIMBL, leads to a performance increase of about 10% (from 31.97 to
41.80). The TIMBL and RIPPER results on the MUC-7 “Common nouns” data set
are another illustrative example. In their default representation, TIMBL and RIP-
PER yield a 41.03 and a 49.24 F β=1 score, respectively. Optimization leads to a
large performance improvement and to a less prominent performance difference:
52.31 for TIMBL and 53.29 for RIPPER. In conclusion, we can state that we cannot
draw conclusions of one classifier being better on a particular task than another
classifier, when only taking into account default settings or limited optimization.

In order to determine which of both learning techniques performs better on
the task of co-reference resolution, we applied a bootstrap resampling test to esti-
mate significance thresholds. This test was done on the optimized “All” and “PPC”
results of both learners and reveals that for half of the results none of the two learn-
ers significantly outperforms the other (MUC-6 and MUC-7 “All”) and that for the
other half RIPPER significantly outperforms TIMBL (MUC-6 “PPC” and KNACK-
2002 “All” and “PPC”). These results, which do not reveal a clear supremacy of
one learner over the other, confirm the necessity of optimization.

With respect to the use of three classifiers, each trained on the co-referential
relations of a specific type of NP, instead of one single classifier covering all co-
referential relations, we could observe in the default experiments that the RIPPER
results on the combined output of the NP type learners were always higher (MUC7,
KNACK-2002: p << 0.01) than the results on the data sets as a whole, whereas
the TIMBL results on the combined data sets were similar (MUC-6, KNACK-2002)
or even significantly below (MUC-7: p << 0.01) the results on the complete data
set. However, after optimization this tendency becomes less clear. A comparison
of the “All” and “PPC” results shows that three classifiers, each trained on one
specific NP type perform better than one single classifier in 5 out of 6 cases (not
for the Ripper results on KNACK-2002). However, this difference in performance
is only significant in 3 out of 6 cases (for TIMBL on KNACK-2002 and RIPPER on
MUC-6 and MUC-7). In short, we can conclude that no convincing evidence is
found for our initial hypothesis that three more specialized classifiers, each trained
on the co-referential relations of a specific type of NP will perform better on the
task of co-reference resolution than one single classifier covering all co-referential
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Table 3: Cross-validation results in terms of precision, recall and Fβ=1 of TIMBL and
RIPPER on the complete MUC-6, MUC-7 and KNACK-2002 data sets, on the partial data
sets (“Pronouns”, “Proper nouns” and “Common nouns”) and on the combined output of the
partial learners (“PPC”). Columns 2-4 provide the results of both learners without feature
selection and in their default parameter settings. Columns 5-7 give the results after joint
feature selection and parameter optimization using a genetic algorithm.

MUC-6 DEFAULT GA OPTIMIZATION
TIMBL Prec. Rec. F β=1 Prec. Rec. F β=1

All 56.80 55.50 56.15 83.22 52.17 64.14
PPC 57.19 56.21 56.70 79.13 54.27 64.38
Pronouns 38.33 27.42 31.97 45.73 38.48 41.80
Proper nouns 63.34 67.53 65.37 88.92 59.57 71.34
Common nouns 53.70 53.53 53.62 87.58 54.39 67.11
RIPPER Prec. Rec. F β=1 Prec. Rec. F β=1

All 84.65 49.65 62.59 73.66 57.36 64.49
PPC 79.73 52.59 63.16 76.01 59.04 66.46
Pronouns 54.78 19.44 28.70 50.84 34.60 41.17
Proper nouns 83.89 61.60 71.04 86.03 62.84 72.63
Common nouns 79.61 55.55 65.44 73.12 66.98 69.92

MUC-7 DEFAULT GA OPTIMIZATION
TIMBL Prec. Rec. F β=1 Prec. Rec. F β=1

All 51.57 46.09 48.68 75.29 45.24 56.52
PPC 50.53 45.32 47.78 76.45 45.23 56.84
Pronouns 42.31 36.60 39.25 61.28 38.96 47.64
Proper nouns 62.36 56.87 59.49 85.92 55.11 67.15
Common nouns 43.06 39.17 41.03 80.45 38.76 52.31
RIPPER Prec. Rec. F β=1 Prec. Rec. F β=1

All 77.51 36.21 49.36 67.19 48.27 56.18
PPC 75.89 38.64 51.21 67.98 49.54 57.31
Pronouns 59.50 22.70 32.86 49.74 49.61 49.68
Proper nouns 84.58 52.56 64.83 87.05 55.25 67.60
Common nouns 74.56 36.76 49.24 72.80 42.03 53.30
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KNACK-2002 DEFAULT GA OPTIMIZATION
TIMBL Prec. Rec. F β=1 Prec. Rec. F β=1

All 48.78 44.93 46.78 71.83 45.50 55.71
PPC 49.75 44.90 47.20 70.22 49.74 58.24
Pronouns 50.11 44.81 47.31 67.65 53.04 59.46
Proper nouns 62.84 54.04 58.11 80.07 54.87 65.11
Common nouns 30.65 30.37 30.51 59.58 33.49 42.88
RIPPER Prec. Rec. F β=1 Prec. Rec. F β=1

All 69.49 34.92 46.49 61.51 61.93 61.72
PPC 66.34 41.75 51.25 60.68 62.26 61.46
Pronouns 61.08 43.14 50.57 58.95 69.69 63.87
Proper nouns 76.84 49.49 60.21 69.36 62.71 65.87
Common nouns 61.82 25.92 36.52 51.57 43.48 47.18

relations.

5 Testing

Defining the anaphora resolution process as we set out to do, namely to first clas-
sify pairs of candidate anaphors and antecedents, necessitates the use of a two-step
procedure. In a first step, the classifier (in our case TIMBL or RIPPER) decides
on the basis of the information learned from the training set whether the combi-
nation of a given anaphor and its candidate antecedent in the test set is classified
as a co-referential link. Since each NP in the test set is linked with several pre-
ceding NPs, this implies that one single anaphor can be linked to more than one
antecedent, which for its part can also refer to multiple antecedents, and so on.
Therefore, a second step is taken, which involves filtering down this link graph to
just one co-referential link per anaphor. We expand on this selection procedure in
Subsection 5.2. First, we describe how we imposed constraints on our systems in
terms of the scope in which antecedents are searched.

The general setup of our experiments on the test set is the following. For all
three data sets (MUC-6, MUC-7 and KNACK-2002), we use a held-out test set.
Both RIPPER and TIMBL are trained on the complete training set and the resulting
classifiers are applied to the held-out test set, which is represented as a set of
instances. For the construction of the test instances, all NPs starting from the
second NP in a text are considered a possible anaphor, whereas all preceding NPs
are considered possible antecedents of the anaphor under consideration. Since this
type of instance construction leads to an enormous increase of the data set and
since we are only interested in finding one possible antecedent per anaphor, we
took into account some search scope limitations.

5.1 Search scope

As a starting point for restricting the number of instances without losing possi-
bly interesting information, we calculated the distance between the references and
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their immediately preceding antecedent. For these calculations, we took the MUC-
6 and KNACK-2002 training sets as a test case. The distances were calculated as
follows: antecedents from the same sentence as the anaphor were at distance 0.
Antecedents in the sentence preceding the sentence of the referring expression
were at distance 1, and so on. We divided the group of referring expressions into
the three categories: (1) pronouns, (2) proper nouns and (3) common nouns. These
results are displayed in Figure 2 and Figure 3.

Both figures reveal similar tendencies. With respect to the pronominal
anaphors, we can observe that in the MUC-6 training data 97.8% of the antecedents
appears in a context of three sentences. From these antecedents, the large major-
ity (73.0%) appears in the sentence itself, 22.7% appears one sentence before and
2.2% of the antecedents of anaphorical pronouns is located two sentences before.
In the KNACK-2002 training data, a similar but less prominent observation can be
made in the case of pronouns. 77.3% of the immediately preceding antecedents
can be found in a context of three sentences. 41.1% of the antecedents appears in
the sentence itself, 29.2% appears one sentence before and 6.9% of the antecedents
of anaphoric pronouns is located two sentences before. With respect to the proper
nouns, we can observe that 79.2% of the proper nouns in the MUC-6 training data
occurs in a scope of three sentences. For KNACK-2002, 44.01% of the immedi-
ately preceding antecedents of the proper noun NPs can be found in a scope of
three sentences. Finally, for the common noun NPs we can observe that in the
MUC-6 training data 73.3% occurs in a scope of three sentences. For KNACK-
2002, 65.2% of the immediately preceding antecedents can be found in a scope of
three sentences.

Although similar tendencies can be observed in both data sets, these tendencies
are much more prominent in the MUC-6 data. This difference might be due to a
difference in text style (magazine articles for KNACK-2002 as opposed to news-
paper articles in MUC-6), a difference in text length (KNACK-2002 has longer
texts) and typological differences between the languages.

We will use this search scope information in the construction of the test in-
stances, for example by restricting the number of test instances in the pronouns
data set to anaphors with antecedents at distance 0, 1 and 2 (as for example also in
Mitkov (1998) and Yang, Zhou, Su and Tan (2003)). For a more elaborate discus-
sion on search scope for English, we refer to Mitkov (2002).

A second motivation for restricting the number of antecedents on the basis of
their distance to the anaphor, only for the pronouns, are the decreasing classifier
results for the antecedents further away, as shown for MUC-6 in Figure 4. This
tendency can be observed for both classifiers. For the other data sets (proper nouns
and common nouns), no general conclusion can be drawn concerning the depen-
dency of performance on the distance of the candidate antecedent to the anaphor.

For the construction of the test instances we took into account the search scope
observations discussed above and used some simple heuristics:

• Pronouns: all NPs in a context of 2 sentences before the pronominal NP are
included in the test sets for the pronouns.
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Figure 2: Distance in number of sentences between a given referring expression and its
immediately preceding antecedent in the MUC-6 training set.
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Figure 3: Distance in number of sentences between a given referring expression and its
immediately preceding antecedent in the KNACK-2002 training set.
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Figure 4: F β=1 results plotted against the distance in number of sentences between an
anaphor and its candidate antecedent after application of TIMBL (left) and RIPPER (right)
on the MUC-6 data sets.
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• Proper nouns: all NPs which partially match the proper nouns NP are in-
cluded. For the non-matching NPs, the search scope is restricted to two
sentences.

• Common nouns: same selection as for the proper nouns.

5.2 Experimental results

Before proceeding to the experimental results on the test data, we will first discuss
the problem of antecedent selection and describe the evaluation procedure as used
on the test data.

Antecedent selection As set out in the introduction of this section, a
classification-based co-reference resolution system as described here necessitates
a two-step procedure. In a first step, possibly co-referential NPs are classified as
being co-referential or not. In a second step, the co-referential chains are built
on the basis of the positively classified instances. For this second step, differ-
ent directions can be taken, such as a “closest-first” approach as used by (Soon
et al. 2001), a selection approach which performs a right-to-left search to find
the most likely antecedent as used by (Ng and Cardie 2002) or a so-called twin-
candidate learning model, in which the antecedent for a given anaphor is identified
through pairwise comparisons as used by (Connolly, Burger and Day 1994) and
(Yang et al. 2003). Instead of selecting one single antecedent per anaphor, as
in the previously described approaches, we tried to build complete co-reference
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chains for our documents. For an extensive description of this selection procedure,
we refer to (Hoste 2005).

Evaluation procedure For all experiments reported on the training data, the per-
formance was reported in terms of precision, recall and F-measure. For all experi-
ments on the test set, the performance is also reported in terms of precision, recall
and F-measure, but this time using the MUC scoring program from Vilain, Burger,
Aberdeen, Connolly and Hirschman (1995). The program focuses on evaluating
equivalence classes, i.e. transitive closures of a co-reference chain – not on evalu-
ating complete chains.

In the Vilain et al. (1995) algorithm, the recall for an entire set T of equivalence
classes is computed as follows:

RT =
∑

(c(S)−m(S))∑
(c(S))

where c(S) is the minimal number of correct links necessary to generate the equiv-
alence class S: c(S) = (|S| − 1). m(S) is the number of missing links in the
response relative to equivalence set S generated by the key: m(S) = (|p(S)|− 1).
p(S) is a partition of S relative to the response: each subset of S in the partition is
formed by intersecting S and the responses sets R i that overlap S. For the compu-
tation of the precision, the roles for the answer key and the response are reversed.
For example, equivalence class S can consist of the following elements S = {1 2
3 4}. If the response is < 1 − 2 >, then p(S) is {1 2}, {3} and {4}.

This algorithm, however, has two major shortcomings according to Baldwin,
Morton, Bagga, Baldridge, Chandraseker, Dimitriadis, Snyder and Wolska (1998).
The algorithm does not give any credit for separating out singletons (entities oc-
curring in chains only consisting of one element, such as 3 and 4 in the preceding
example). Furthermore, it does not distinguish between different types of errors.
In the following example, the key consists of three equivalence classes and two re-
sponses are given. The two responses yield the same precision (88.9%) and recall
score (100%) according to the MUC scoring program. Baldwin et al. (1998) argue
that the error made in response 2 is more damaging, since it makes more entities
erroneously co-referent:

key 0←1←2←3
4←5
6←7←8←9←10

response 1 0←1←2←3←4←5
6←7←8←9←10

response 2 0←1←2←3←6←7←8←9←10
4←5

Despite these shortcomings, we used this scoring software since it has been
widely used for evaluation on the MUC-6 and MUC-7 data sets and it thus enables
comparison with the results of other systems on these data sets.
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Table 4 gives an overview of the results obtained by TIMBL and RIPPER on the
“Pronouns”, “Proper nouns” and “Common nouns” test sets in terms of precision,
recall and F β=1 . It shows that our results obtained on the MUC-6 and MUC-7
data sets are comparable to the results reported by Soon et al. (2001). They report
a precision of 67.3%, a recall of 58.6% and an F β=1 of 62.6% on the MUC-6 data.
For MUC-7, they report a precision of 65.5%, a recall of 56.1% and an F β=1 of
60.4%. The best results reported to date on the MUC-6 and MUC-7 data are by Ng
and Cardie (2002a,2002b,2002c): 63.3% recall, 76.9% precision and 69.5% F β=1

on MUC-6 and 54.2% recall, 76.3% precision and 63.4% F β=1 on MUC-73. Their
extensions to the approach of Soon et al. (2001) include (i) the expansion of the
feature set with additional lexical, semantic and knowledge-based features, (ii) a
modification of the clustering algorithm favoring the ’highest likely antecedent’,
(ii) a learning-based method to determine anaphoricity, (iii) positive and negative
sample selection in order to handle the problem of skewed class distributions, and
(iv) pruning of the rule sets.

For KNACK-2002, no comparative results are yet available since this is a new
corpus. Table 4 shows that both TIMBL and RIPPER obtain a F β=1 score of 51% on
the Dutch data. As for English, the precision scores for the “Pronouns” (64.9% for
TIMBL and 66.7% for RIPPER) and the “Proper nouns” data sets (79.4% for TIMBL
and 79.0% for RIPPER) are much higher than those obtained on the “Common
nouns” data set (47.6% for TIMBL and 47.5% for RIPPER). Furthermore, the recall
scores are about 20% lower than the precision scores: 42.2% recall vs. 65.9%
precision for TIMBL and 40.9% recall vs. 66.3% precision for RIPPER.

6 Post-correcting co-reference chains based on Levenshtein distance

The two-step procedure described in the previous sections operates from local
classifications in the first step to more global antecedent selection and chaining
in the second step. Errors in both steps can lead to incorrect equivalence classes
and chains; errors in the first step are irrepairable by the second and percolate to
the end result, and errors in the second step immediately lead to mispredicted or
missed equivalence classes. Nonetheless, it is conceivable that certain errors in
the resulting chains could be identified by a third step as violating certain basic
syntactic properties of chains, if there would be a third step that has knowledge of
the constraints on the composition of chains. For example, chains may typically
not start with a pronoun. Or, two adjacent proper nouns may not link to each other
when later in the text one of the two proper nouns is repeated.

As these informal example rules indicate, these validity constraints could be
formulated at the level of types of NPs: pronouns, proper nouns, common nouns,
and some concept of distance. Once formulated at this abstract level, a chain
could then be checked against a grammar or a reference list (or trusted lexicon) of
possible chain structures, and be marked as violating some grammar constraint or
not occurring in the list.
3On MUC-6, they report a top performance of 70.4% Fβ=1 when doing manual feature selection.
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Table 4: Results from TIMBL and RIPPER on the test set in terms of precision, recall and
F β=1 . No recall and Fβ=1 scores could be provided on the NP type data sets, since the
scoring software does not distinguish between the three NP types.

MUC-6 Prec. Rec. F β=1

Timbl
PPC 70.5 59.1 64.3
Pronouns 77.3 — —
Proper nouns 83.0 — —
Common nouns 56.4 — —
Ripper
PPC 66.2 60.9 63.4
Pronouns 79.9 — —
Proper nouns 82.2 — —
Common nouns 50.4 — —

MUC-7 Prec. Rec. F β=1

Timbl
PPC 67.1 54.5 60.2
Pronouns 68.4 — —
Pronouns 68.4 — —
Proper nouns 78.0 — —
Common nouns 54.3 — —
Ripper
PPC 68.7 49.5 57.6
Pronouns 67.8 — —
Proper nouns 82.5 — —
Common nouns 57.2 — —

KNACK-2002 Prec. Rec. Fβ=1

Timbl
PPC 65.9 42.2 51.4
Pronouns 64.9 — —
Proper nouns 79.4 — —
Common nouns 47.6 — —
Ripper
PPC 66.3 40.9 50.6
Pronouns 66.7 — —
Proper nouns 79.0 — —
Common nouns 47.5 — —
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While a grammar of co-reference chains may be manually written, it would
require manual labor for each language and possibly each domain, since different
types of text use different conventions for chaining and the use of pronouns, such
as fictional novels versus newspaper text. Instead, we explored the option of using
a trusted lexicon and an error detection module that checks whether a produced
chain conforms with the list. We define this procedure as a spelling correction
mechanism, where our “spelling” is the abstract representation of a chain into a
small alphabet of symbols representing types of NPs, their distance, and their link-
age. We tested five increasingly complex alphabets, starting from a two-symbol
code only encoding linkage, to a four-symbol code encoding types, linkage, and
distance. The alphabet encodings have in common that they encode a chain as a
string that starts with the first linked element of the chain, and ends with the final
linked element. The further definition of the five alphabets is the following:

1. The LOLOL alphabet encodes any linked element, whether it is a pronoun, a
proper noun, or a common noun, as an L, and any NP between two linked
elements as an O. Even if several NPs occur between two Ls, they are repre-
sented by a single O.

2. The LOOLOL alphabet is similar to LOLOL, except that it represents each
intermediary non-linked NP between two Ls as an individual O.

3. The LOLOP alphabet is again similar to LOLOL, but it distinguishes between
pronouns (the most frequent type of linked element, represented by P) and
other NPs (proper and common nouns, L).

4. The LOOLOP alphabet inherits its definition from both LOLOP and LOOLOL;
it encodes the numbers of non-linked intermediary elements, and discerns
between proper nouns and other NPs.

5. The NOOLOP alphabet is an extension of LOOLOP in that it further discerns
between proper nouns (N) and common nouns (L).

In example text fragment 4 the bold-faced words represent the elements of a
co-reference chain, while the italicized words belong to other chains. The simple
chain from “the space” to “space” has five intermediary NPs that do not belong
to the chain, so while the LOLOL coding would encode this chain as LOL, the
LOOLOL coding would encode it as LOOOOOL.

(4) The earth is not disconnected from the space from which she originated.
The Astrophysical Journal even reports that the evolution of life on earth
can be influenced by what happens in space.

The post-processing step we applied on our data uses all chains in the train-
ing set (encoded by one of these alphabets) as the trusted lexicon, and treats any
new predicted chain as a possibly incorrect sequence that needs to be corrected
to match its most likely correct form. To find the most likely correct form, a
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classical method is to find the most similar form according to Levenshtein dis-
tance (Levenshtein 1965). This classical distance metric counts the numbers of
deletions, insertions, and substitutions needed to convert one string to the other,
whereby in its simplest variant all three operations are counted as contributing a
distance of 1. Levenshtein distance can be computed efficiently for small strings
using dynamic programming.

A small alphabet and no representation of numbers of intermediate elements,
such as the LOLOL coding, leads to just a small number of possible patterns of
alternations of Ls and Os, and it is likely that a new chain predicted on test data
will have been seen in the training set. This would spoil the intended functionality
of the method; the goal is to be able to detect incorrect sequences by detecting a
strong similarity with a known sequence in the reference list, to be able to spot the
difference and suggest a correction. To attain this goal, the alphabet coding should
be expressive enough to allow differences to occur between sufficiently different
chains, but should not be too expressive to avoid the suggestion of corrections from
too distant neighbors.

We implemented the checking procedure as follows. Given each generated
chain, we first converted it according to the selected alphabet coding, and searched
for the most similar chain in the trusted lexicon according to Levenshtein distance.
In case of equally-distant neighbors, we heuristically preferred the neighbor with
an equal number of symbols. If the most similar chain was in fact an identical chain
we left the predicted chain unchanged. If the best match differed, we adapted the
predicted chain only if the correction involved a change of a link element into an
element outside the chain (O). This implies that our correction only involves the
deletion of chain elements, and not the insertion or replacement – it will therefore
only improve precision if it correctly deletes superfluous link elements. The moti-
vation for not performing insertions is that insertions, if incorrect, would do dou-
ble damage, both to the current chain as well as to any other chain it is necessarily
deleted from (since elements cannot belong to two chains). The straightforward
reason for not replacing link elements is that the link element types cannot be cor-
rected as such - a pronoun cannot be “corrected” into a proper noun. In this sense
our correction differs from orthographical spelling correction.

We applied the Levenshtein-based post-processing correction method, using
the five alphabet codings, to the KNACK-2002 corpus, and compared its overall
performance when applied to the output of Timbl on the “All” task. The results are
given in Table 5, which also offers the MUC score on the original output before
correction for comparison. None of the correction methods improves on recall,
which is to be expected since the correction only involves the deletion of chain
elements; any incorrect deletion diminishes recall. Precision, however, is indeed
slightly boosted by post-processing. The best precision, 70.0, 2.5 points above the
baseline precision, is attained using the LOOLOP coding; the best F-measure, 51.8,
is attained by the similar NOOLOP coding since it does not harm recall as much as
LOOLOP. It appears that the LOOLOL and LOOLOP codings (encoding the actual
number of intermediate symbols) trigger relatively many false-alarm corrections
compared to LOLOL and LOLOP. The most expressive alphabet tested, NOOLOP,
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Table 5: Comparative results of Levenshtein-distance-based correction, as measured by the
MUC scorer on the “All” task, based on Timbl’s output on KNACK-2002: the baseline score
(no coding), and the scores attained by correction using five different alphabet codings.
Bold-face results indicate the highest score in the column.

Correction coding Recall Precision F β=1

no coding 41.4 67.5 51.3
LOLOL 41.1 67.7 51.1
LOOLOL 38.4 67.3 48.9
LOLOP 41.4 67.6 51.3
LOOLOP 40.9 70.0 51.6
NOOLOP 41.3 69.9 51.8

appears to strike the best balance.
An error analysis reveals that certain recurring types of errors are consistently

repaired by the method. For instance, enumerations of more than two proper nouns
with commas would often trigger Timbl to link the second proper noun to the first,
while they are in fact enumerated non-linked names. Another typical correction is
the deletion of a link between an NP and an immediately adjacent pronoun, fol-
lowed at some distance by a non-pronominal link element. In code terms, LPOOOL
would for instance be corrected to LOOOOL.

7 Concluding remarks

We have presented a modular machine learning approach to the resolution of co-
referential relations between nominal constituents in English and Dutch. The sys-
tem has three components; in the first, local decisions are made among pairs of
pronominal, common noun and proper noun NPs to determine whether they re-
fer to the same. In the second step a more global selection is made among all
pairwise linkages to form entire co-reference chains. In the third step, a global
post-processing procedure based on spelling correction methods checks if each
generated chain contains superfluous linked elements.

On the local decision level we showed that optimization of feature selection and
parameter optimization can cause large variation in the results of a classifier. Fur-
thermore, the performance differences inside one single learning algorithm could
be much larger than the method-comparing performance differences. With respect
to the use of three classifiers, each trained on the co-reference relations of a spe-
cific type of NP, instead of one single classifier covering all relations, we could
not find convincing evidence for our initial hypothesis that three more specialized
classifiers would outperform one single classifier.

On the co-reference chain level we could observe that the results on Dutch,
which are the first results ever to be reported on this scale for this language, are
lower than for English. This might be due to a difference in the types of training
and testing material, to a more difficult feature construction for Dutch due to less
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developed syntactic and semantic resources, but also to differences between Dutch
and English. For Dutch, for example, the resolution of male and female pronouns
suffers from a much larger search space of possible candidate antecedents since
pronouns can also refer to the linguistic gender of the antecedent. However, disre-
garding these differences, we observe rather similar results to those of the English
systems.

In a final post-processing step which uses Levenshtein distance to check if
the generated chains contain superfluous linked elements, a modest increase in
precision could be obtained.

References

Aone, C. and Bennett, S. (1995), Evaluating automated and manual acquisition of
anaphora resolution strategies, Proceedings of the 33rd Annual Meeting of
the Association for Computational Linguistics (ACL-1995), pp. 122–129.

Baayen, R. , Piepenbrock, R. and van Rijn, H. (1993), The CELEX lexical data
base on CD-Rom.

Baldwin, B. , Morton, T. , Bagga, A. , Baldridge, J. , Chandraseker, R. , Dimi-
triadis, A. , Snyder, K. and Wolska, M. (1998), Description of the upenn
camp system as used for coreference, Proceedings of the Seventh Message
Understanding Conference (MUC-7).

Buchholz, S. (2002), Memory-based Grammatical Relation finding, PhD thesis,
Tilburg University.

Cardie, C. and Wagstaff, K. (1999), Noun phrase coreference as clustering, Pro-
ceedings of the 1999 joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora, pp. 82–89.

Cohen, W. W. (1995), Fast effective rule induction, Proceedings of the 12th Inter-
national Conference on Machine Learning (ICML-1995), pp. 115–123.

Connolly, D. , Burger, J. and Day, D. (1994), A machine learning approach to
anaphoric reference, Proceedings of the International Conference on ‘New
Methods in Language Processing’.

Daelemans, W. and Hoste, V. (2002), Evaluation of machine learning methods
for natural language processing tasks, Proceedings of the Third Interna-
tional Conference on Language Resources and Evaluation (LREC-2002),
pp. 755–760.

Daelemans, W. , Hoste, V. , De Meulder, F. and Naudts, B. (2003a), Combined op-
timization of feature selection and algorithm parameter interaction in ma-
chine learning of language, Proceedings of the 14th European Conference
on Machine Learning (ECML-2003), pp. 84–95.

Daelemans, W. , van den Bosch, A. and Zavrel, J. (1999), Forgetting exceptions is
harmful in language learning, Machine Learning 34(1-3), 11–41.

Daelemans, W. , Zavrel, J. , van den Bosch, A. and van der Sloot, K. (2003b),
Memory based tagger, version 2.0, reference guide, Technical Report ILK
Technical Report - ILK 03-13, Tilburg University.

Daelemans, W. , Zavrel, J. , van der Sloot, K. and van den Bosch, A. (2002), Timbl:



24

Tilburg memory-based learner, version 4.3, reference guide, Technical Re-
port ILK Technical Report - ILK 02-10, Tilburg University.

De Meulder, F. and Daelemans, W. (2003), Memory-based named entity recog-
nition using unannotated data, Proceedings of the Seventh Conference on
Natural Language Learning (CoNLL-2003), pp. 208–211.

De Pauw, G. , Laureys, T. , Daelemans, W. and Van Hamme, H. (2004), A com-
parison of two different approaches to morphological analysis of Dutch,
Proceedings of the Seventh Meeting of the ACL Special Interest Group in
Computational Phonology, pp. 62–69.

Decadt, B. , Hoste, V. , Daelemans, W. and van den Bosch, A. (2004), GAMBL,
genetic algorithm optimization of memory-based WSD, Proceedings of the
Third International Workshop on the Evaluation of Systems for Semantic
Analysis of Text (SENSEVAL-3), pp. 108–112.

Fellbaum, C. (1998), WordNet: An Electronic Lexical Database, MIT Press.
Fisher, F. , Soderland, S. , Mccarthy, J. , Feng, F. and Lehnert, W. (1995), Descrip-

tion of the UMass system as used for MUC-6, Proceedings of the Sixth
Message Understanding Conference (MUC-6), pp. 127–140.

Hoste, V. (2005), Optimization Issues in Machine Learning of Coreference Reso-
lution, PhD thesis, Antwerp University.

Hoste, V. , Hendrickx, I. , Daelemans, W. and van den Bosch, A. (2002), Parameter
optimization for machine-learning of word sense disambiguation, Natural
Language Engineering, Special Issue on Word Sense Disambiguation Sys-
tems 8, 311–325.

Ji, H. , Westbrook, D. and Grishman, R. (2005), Using semantic relations to refine
coreference decisions, Proceedings of HLT/EMNLP, pp. 17–24.

Levenshtein, V. I. (1965), Binary codes capable of correcting insertions, deletions,
and reversals, Doklady Akademii Nauk SSSR 163(4), 845–848. Original ar-
ticle in Russian. English translation in Soviet Physics Doklady, 10(8):707–
710, 1966.

Markert, K. and Nissim, M. (2005), Comparing knowledge sources for nominal
anaphora resolution, Computational Linguistics 31(3), 367–401.

McCarthy, J. (1996), A Trainable Approach to Coreference Resolution for Infor-
mation Extraction, PhD thesis, Department of Computer Science, Univer-
sity of Massachusetts, Amherst MA.

Mihalcea, R. (2002), Word sense disambiguation with pattern learning and auto-
matic feature selection, Natural Language Engineering, Special Issue on
Word Sense Disambiguation Systems 8, 343–358.

Mitkov, R. (1998), Robust pronoun resolution with limited knowledge, Proceed-
ings of the 17th International Conference on Computational Linguistics
(COLING-1998/ACL-1998), pp. 869–875.

Mitkov, R. (2002), Anaphora Resolution, Longman.
MUC-6 (1995), Coreference task definition. version 2.3., Proceedings of the Sixth

Message Understanding Conference (MUC-6), pp. 335–344.
MUC-7 (1998), Muc-7 coreference task definition. version 3.0., Proceedings of

the Seventh Message Understanding Conference (MUC-7).



A Modular Approach to Learning Dutch Co-reference 25

Ng, V. and Cardie, C. (2002), Combining sample selection and error-driven prun-
ing for machine learning of coreference rules, Proceedings of the 2002Con-
ference on Empirical Methods in Natural Language Processing (EMNLP-
2002), pp. 55–62.

Quinlan, J. (1993),C4.5: Programs for machine learning, Morgan Kaufmann, San
Mateo, CA.

Soon, W. , Ng, H. and Lim, D. (2001), A machine learning approach to coreference
resolution of noun phrases, Computational Linguistics 27(4), 521–544.

Strube, M. , Rapp, S. and Müller, C. (2002), The influence of minimum edit dis-
tance on reference resolution, Proceedings of the 2002 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP-2002), pp. 312–
319.

Tjong Kim Sang, E. , Daelemans, W. and Höthker, A. (2004), Reduction of
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