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Abstract. Lexical variance in biomedical texts poses a challenge to au-
tomatic protein relation mining. We therefore propose a new approach
that relies only on more general language structures such as parsing and
dependency information for the construction of feature vectors that can
be used by standard machine learning algorithms in deciding whether a
sentence describes a protein interaction or not. As our approach is not
dependent on the use of specific interaction keywords, it is applicable
to heterogeneous corpora. Evaluation on benchmark datasets shows that
our method is competitive with existing state-of-the-art algorithms for
the extraction of protein interactions.

1 Introduction

Studying the interactions of proteins is an essential task in biomedical research,
S0 it comes as no surprise that a lot of effort is being devoted to the construc-
tion of protein interaction knowledge bases. More and more relevant information
is becoming available on the web, in particular in literature databases such as
MEDLINE?, in ontological resources such as the Gene Ontology?, and in spe-
cialized structured databases such as IntAct®. The unstructured information in
scientific publications poses the biggest challenge to biologists who are interested
in specific gene or protein interactions, as they are forced to spend a tremen-
dous amount of time reviewing articles looking for the information they need.
Structured knowledge bases are easier to query, but again require a great deal
of knowledge and labour intensive maintenance to stay synchronized with the
latest research findings in molecular biology. Automation tools can facilitate this
task, which is why machine learning techniques for information extraction (IE)
in the biomedical domain have gained a lot of attention over the last years.

3 http://www.ncbi.nlm.nih.gov/
4 http://www.geneontology.org/
5 http://www.ebi.ac.uk/intact/site/index. jsf



Relation extraction from texts is one of the most difficult tasks of IE. In nat-
ural language, relations can be expressed in different ways, hence no universal set
of rules or patterns for mining them can be constructed. Traditional algorithms
for relation learning from texts can perform reasonably well (see e.g. [1,2,5,12]),
but they typically rely explicitly or implicitly on specific interaction keywords,
which limits their applicability to heterogeneous data. The biggest obstacle with
heterogeneous datasets is that they describe protein interactions using different
lexicons. However, entirely different surface representations for interactions can
still exhibit the same syntactic pattern. We therefore propose to abstract from
pure lexical data and to concentrate only on more general language structures
such as parsing and dependency information. This coarser grained approach al-
lows to cope better with the lexical variance in the data. Indeed, taking the fact
into account that lexically different expressions of protein interactions might still
bear some resemblance on the syntactic level provides welcome hints for machine
learning techniques that commonly thrive on similarities in the data.

The resulting system is a mining tool that facilitates information extraction
and knowledge base maintenance by presenting to the user protein interactions
identified in scientific texts. The tool aims at supporting biologists in finding rel-
evant information, rather than to exclude them entirely from the data processing
flow. After reviewing related approaches in Section 2, we give a detailed descrip-
tion of the proposed method in Section 3. Abstracting from pure lexical data
and only relying on syntactic patterns instead bears the risk of overgeneraliz-
ing, in the sense that sentences that do not describe protein interactions might
exhibit a syntactic structure similar to those that do, and hence they might get
incorrectly identified as protein interactions. To verify the reliability of our ap-
proach we therefore evaluated it on two benchmark datasets. The experimental
results and a comparison with existing algorithms are described in Section 4.
Concluding remarks and future work are presented in Section 5.

2 Related Work

The extraction of protein relations has attracted a lot of attention during the last
years, resulting in a range of different approaches. The first step is the recognition
of the protein names themselves (see e.g. [3,6,15]). As the focus of this paper
is on the mining of interactions, we assume that protein name recognition has
already taken place. The recognition of protein interactions is typically treated as
a classification problem: the classifier gets as input information about a sentence
containing two protein names and decides whether the sentence describes an
actual interaction between those proteins or not. The classifier itself is built
manually or, alternatively, it is constructed automatically using an annotated
corpus as training data. The different approaches can be distinguished based
on the information they feed to the classifier: some methods use only shallow
parsing information on the sentence while others exploit full parsing information.

Shallow parsing information includes part-of-speech (POS) tags and lexical
information such as lemmas (the base form of words occuring in the sentence)



and orthographic features (capitalization, punctuation, numerals etc.). In [2], a
support vector machine (SVM) model is used to discover protein interactions. In
this approach each sentence is split into three parts — before the first protein,
between the two proteins and after the second protein. The kernel function
between two sentences is computed based on common sequences of words and
POS tags. In another approach [5], this kernel function is modified to treat the
same parts of the sentence as bags-of-words and called a global context kernel.
It is combined with another kernel function called a local context kernel, that
represents a window of limited size around the protein names and considers POS,
lemmas, and orthographic features as well as the order of words. The resulting
kernel function in this case is a linear combination of the global context kernel,
and the local context kernel.

A completely different approach is presented in [12], where very high recall
and precision rates are obtained by means of hand-crafted rules for sentence
splitting and protein relation detection. The rules are based on POS and keyword
information, and they were built and evaluated specifically for Escherichia coli
and yeast domains. It is questionable, however, whether comparable results could
be achieved in different biological domains and how much effort would be needed
to adapt the approach to a new domain. In another approach reported on in [8], a
system was built specifically for the LLL challenge (see Section 4). First, training
set patterns are built by means of pairwise sentence alignment using POS tags.
Next, a genetic algorithm is applied to build several finite state automata (FSA)
that capture the relational information from the training set.

Besides the methods described above, approaches have been proposed that
augment shallow parsing information with full parsing information, i.e. syntactic
information such as full parse and dependency trees. In [4] for instance, for
every sentence containing two protein names a feature vector is built containing
terms that occur in the path between the proteins in the dependency tree of
the sentence. These feature vectors are used to train an SVM based classifier
with a linear kernel. More complex feature vectors are used in [10], where the
local contexts of the protein names, the root verbs of the sentence, and the
parent, of the protein nodes in the dependency tree are taken into account by a
BayesNet classifier. In [7], syntactic information preprocessing, hand-made rules,
and a domain vocabulary are used to extract gene interactions. The approach
in [17] uses predicate-argument structures (PAS) built from dependency trees.
Asg surface variations may exhibit the same PAS, the approach aims at tackling
lexical variance in the data. It is tailored towards the Almed dataset (see Section
4) for which 5 classes of relation expression templates are predefined manually.
The classes are automatically populated with examples of PAS patterns and
protein interactions are identified by matching them against these patterns.

To the best of our knowledge, all existing work either uses only shallow
parsing information (including lexical information) or a combination of shallow
and full parsing information. Furthermore, approaches of the latter kind typically
use dependency trees only as a means to e.g. detect chunks or to extract relevant
keywords. The goal of this paper is to investigate what can be achieved using



only full parsing information. In other words, the full parsing information is
not used as a means to select which further (lexical) information to feed to the
classifier, but it is used as a direct input itself to the classifier. The fact that such
an approach is independent of the use of a specific lexicon makes it worthwhile
to investigate.

3 DEEPER: a Dependency and Parse Tree based
Relation Extractor

There is an abundance of ways in English to express that proteins stimulate or
inhibit one another, and the available annotated corpora on protein interactions
cover only a small part of them. In other words, when the interaction mining tool
is confronted with a previously unseen text, it is likely for this text to contain
protein interactions described in ways for which there is no exact matching
example in the training data. However, different surface representations can still
exhibit a similar syntactic pattern, as the following example illustrates.

Example 1. Consider the following sentences about the interaction between sig-
ma F and sigma E in one case and between GerFE and cotB in the other case:

Sigma F activity regulates the processing of sigma E within the mother
cell compartment.

A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.

Although the surface representations are very different, the underlying syntactic
pattern, which represents part of a dependency tree, is the same in both cases:

. nn nsubj dobj prep_of .
protein < noun <+ verb — noun = protein

We exploit this deeper similarity between training instances by using depen-
dency and parsing information to build abstract representations of interactions.
Such representations have less variance than the initial lexical data, hence sen-
sible results can be obtained from smaller training datasets. The approach is
fully automatical and consists of three stages: after a text preprocessing stage,
for every sentence containing two tagged protein names, we construct a feature
vector summarizing relevant information on the parse tree and the dependency
tree. In the third stage a classifier is trained to recognize whether the sentence
describes an actual interaction between the proteins. The novelty of the approach
w.r.t. existing work is that we do not use dependency data to detect keywords,
but we consider dependencies as features themselves. In the next section we show
that using only this kind of syntactic information without any lexical data allows
to obtain reasonably good results.



Text preprocessing This step is intended to simplify the sentence structure and
hence increase the parser reliability. It includes sentence splitting as well as the
detection and the substitution of complex utterances (e.g. chemical formulas
or constructions with many parentheses) with artificial strings, which in some
cases can otherwise significantly reduce the quality of parsing. Furthermore, we
expand repeating structures, turning e.g. ‘sigA- and sigB-proteins’ or ‘sigA /sigB-
proteins’ into 'sigA-proteins and sigB-proteins’. All substitutions are done auto-
matically by means of regular expressions; hence the same kind of preprocessing
can be applied to an arbitrary text. Moreover, tagged protein names in the text
may include more than one word; in order to treat them as a single entity in
further processing stages, we replace them in the same manner as formulas. Fi-
nally, we take all possible pairwise combinations of proteins in each sentence and
create one sentence for each combination where only this combination is tagged.
Part of this process is shown in Example 2.

Ezample 2. Below is the result after text preprocessing for the second sentence
from Example 1:

A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.

A low GerE concentration, which was observed during the experiment,
activated the transcription of cotB by final sigmaK RNA polymerase,
whereas a higher concentration was needed to activate transcription of
cotX or cotC.

Feature vector construction After the text preprocessing stage, for each sentence
we build a feature vector that summarizes important syntactic information on
the parse tree and the typed dependency tree, which are both ways of repre-
senting sentence structure. A parse tree is a tree (in terms of graph theory) that
represents the syntactical structure of a sentence. Words from the sentence are
leaves of the parse tree and syntactical roles are intermediate nodes, so a parse
tree represents the nesting structure of multi-word constituents. A dependency
tree on the other hand represents interconnections between individual words of
the sentence. Hence, all nodes of the dependency tree are words of the sentence,
and edges between nodes represent syntactic dependencies. In typed dependency
trees, edges are labeled with syntactic functions (e.g., subj, obj). Figure 1 depicts
the typed dependency tree and parse tree for the first sentence of Example 1.
During the feature extraction phase we parse each sentence with the Stanford
ParserS. For each tagged pair of proteins (recall that each sentence has only
one such pair), we extract a linked chain [14] from the dependency tree. The
dependency tree is unordered w.r.t. the order of the words in the sentence; hence
to produce patterns uniformly, we order the branches in the linked chain based

S http://nlp.stanford.edu/downloads/lex-parser.shtml
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Fig. 1. Dependency and parse trees and linked chain for the first sentence of Ex. 1.

on the position of the words in the initial sentence. Thus the left branch contains
the word that occurs earlier in the sentence and the right branch the word that
occurs later. The absolute majority of the branches in the linked chains from the
datasets we examined contain no more than 6 edges, and those which contain
more are negative instances, so we choose feature vectors with 6 features for each
branch to cover all positive examples from the training set. Therefore, we use
the first 6 dependencies from the left branch as the first 6 features in the feature
vector. Likewise, the first 6 dependencies from the right branch correspond to
features 7 through 12. Moreover, to better describe the structure of the relation
we incorporate information from the parse tree as well, namely the length of the
path from the root of the parse tree to each protein as the 13th and the 14th
feature, and the number of nested subsentences in these paths as the 15th and
the 16th feature.

Ezample 3. Below is the feature vector of the first sentence from Example 1:

[nsubjlnn| | | | |dobjlprep-of] | | | [4]7[0]0]

We extract a linked chain between the two proteins, as shown in Figure 1. Tt is
already ordered, i.e. Sigma F precedes Sigma FE in the sentence, so we do not
need to swap these branches. We take the left branch and fill the first 6 features
of the feature vector. As the branch contains only 2 dependencies nsubj and



nn, 4 slots in the vector remain empty. Features 7-12 for the right branch are
filled in the same manner. Sigma F'is at depth 4 in the parse tree while Sigma E
is at depth 7, and the parse tree in Figure 1 does not contain subsentences. All
this information is reflected in the last 4 features of the vector. Note that the
resulting feature vector contains several empty fields; only the most complicated
sentences will have a value for each feature in the vector.

Training a classifier By the above process, we obtain a set of feature vectors for
sentences which can be divided into two classes — those that describe real protein
interactions and those that do not. Therefore, we can use a standard classification
algorithm to distinguish between these two classes. To build the classifier, we use
a decision tree algorithm (C4.5 implementation [13]) and the BayesNet classifier
[9]. These two algorithms represent classical instances of two branches of machine
learning — rule induction and statistical learning — which employ different
approaches to data processing. Decision trees consist of internal nodes which
represent, conditions on feature values, and leaves which represent classification
decisions that conform to the feature values in nodes on the way to this leaf.
The BayesNet classifier is represented as a directed graph with a probability
distribution for each feature in the nodes and with the edges denoting conditional
dependencies between different features. When we use the BayesNet classifier we
apply a conditional independence assumption, which means that probabilities of
node values depend only on probabilities of values of their immediate parents,
and do not depend on higher ancestors. This corresponds to the reasonable
assumption that the syntactic role of a node in the linked chain depends on the
syntactic role of its parent only.

To overcome the problem of missing values (which occur frequently in the
feature vectors), in the BayesNet classifier we simply change them by a default
value. With C4.5, to classify an instance that have a missing value for a given
node, the instance is weighted proportionally to the number of instances that
go down to each branch, and recursively processed on each child node w.r.t. to
assigned weight. This process is described in more detail in [16].

4 Experimental Evaluation

To verify the reliability of our approach, we evaluated it on two datasets. The
first dataset [11] originates from the Learning Language in Logic (LLL) relation
mining challenge on Genic Interaction Extraction”. This dataset contains anno-
tated protein/gene interactions concerned with Basilicus subtilis transcription.
The sentences in the dataset do not make up a full text, but they are individual
sentences taken from several abstracts retrieved from Medline. The proteins in-
volved in the interactions are annotated with agent and target roles; because our
current approach is not aimed at mining the direction of interactions, we ignore
this annotated information and treat the interactions as symmetrical relations.

" http://genome. jouy.inra.fr/texte/LLLchallenge/



The Almed dataset [1] is compiled from 197 abstracts extracted from the
Database of Interacting Proteins (DIP) and 28 abstracts which contain protein
names but do not contain interactions. Since we are interested in retrieving
protein interactions, in this paper we use only the former set of abstracts. The
connection between a full name of a protein and its abbreviation, e.g. tumor
necrosis factor (TNF), is annotated as an interaction in the Almed dataset.
Since such an annotation is not concerned with an actual interaction between
different proteins, we omit this kind of data from our experiments. Furthermore
we removed nested protein annotations, which wrap around another protein or
interaction annotation. Finally, TI- and AD- sections as well as PG- prefixes,
which are Medline artifacts, were removed.

More information about the datasets is listed in Table 1. From this table,
it is clear that the Almed dataset is highly imbalanced, as there is a strong
bias to negative examples. To the best of our knowledge, these are the only
two publicly available datasets containing annotations of protein interactions
and hence suitable to evaluate our approach. In the evaluation we used 10-fold

Table 1. Datasets used in the experiments

Dataset |# sentences‘# positive instances|# negative instances
Almed 1978 816 3204
LLL’05 77 152 233

cross validation for both the ATmed and the LLLO5 dataset; furthermore we ran
experiments with Almed as training set and LLLO05 as test set. We used Weka
[16] for the implementation of the machine learning methods.

The difference in the datasets requires different parameters to achieve optimal
performance. As we have mentioned above, the Almed dataset is imbalanced
and using it for training tends to lead to a bias towards classifying examples as
negative (independently of the training scheme). For this reason, we use cost-
sensitive learning [16] to decrease the bias when ATmed is used as a training set.
Moreover, in the C4.5 implementation for the Almed dataset, we build a binary
decision tree, i.e. at each node the algorithm tests only one value of one feature.
Otherwise, the algorithm would decide that the empty tree classifies the dataset
in the best way, and all examples would be classified as negative (again, because
of the biased dataset).

The results below are described in terms of the sentences that are (in)correctly
identified by the system as describing a protein interaction, as these are exactly
the instances that the system will present to the biologist. The relevant instances
are the sentences that should have been identified as describing protein interac-
tions; this includes the true positives, i.e. the positive instances that are correctly
identified by the system, but also the false negatives, i.e. the positive instances
that are overlooked by the system. The retrieved instances are the sentences



that are identified by the system as describing protein reactions. This includes
the true positives but may also include false positives, i.e. sentences incorrectly
identified by the system as describing a protein interaction. Using TP, FN, and
FP to denote the number of true positives, false negatives, and false positives
respectively, recall and precision are defined as
TP .. TP
recall = TP 3 FN precision = TP 1 FP

Recall (also referred to as coverage) indicates how many of the relevant instances
are retrieved. Precision (also referred to as accuracy) indicates how many of the
retrieved instances are relevant.

To study the trade-off between recall and precision we use a confidence
threshold p between 0 and 1 such that an instance is retrieved iff the classi-
fier has a confidence of at least p that the instance describes a real protein
interaction. The BayesNet classifier provides such a confidence value naturally,
because its output is a class distribution probability for each instance. Decision
trees can also be easily adapted to produce a probabilistic output by counting
training examples at the leaf nodes. If a sentence that is being classified ends
up at a leaf node, the confidence of the classifier that it is a positive instance, is
the proportion of positive training examples to all training examples at that leaf
node. When p is set to 1, a sentence is only retrieved if the classifier has absolute
confidence that it describes a protein interaction. In this case typically the preci-
sion is high while the recall is low. Decreasing the threshold p allows to increase
the recall at the cost of a drop in the precision. Figure 2 shows recall-precision
curves obtained by varying p from 1 to 0.

As the first picture depicts, both classifiers allow to obtain similarly nice
results for the LLLO5 dataset, which is a first indication that we can make rea-
sonable predictions about the occurrence of protein interactions in sentences
based solely on full parsing information. Several authors present results of their
protein relation extraction methods on the LLL0O5 dataset. However, since our
current, approach is not aimed at identifying agent and target roles in the in-
teractions, we can only compare our results with those methods that treat the
interactions as symmetrical relations. The first picture in Figure 2 shows a result
from [7] depicted by a * and corresponding to a recall of 85% and a precision of
79%. One should keep in mind that the method from [7] uses hand-made rules
and a domain vocabulary, while our approach does not employ any prespeci-
fied knowledge. However, results show that our approach with a C4.5 classifier
achieves results which are very close to the ones obtained by RelEx.

Whereas the LLL05 dataset contains only selected sentences from Medline
abstracts, the Almed dataset contains full abstracts, posing a bigger challenge
to our approach. The second picture in Figure 2 shows that C4.5 and BayesNet
allow to obtain comparable results in terms of recall and precision. They both
outperform the PAS-approach for which a recall of 33.1% for a precision of 33.7%
is reported in [17].

Finally, we performed a cross dataset experiment using the ATmed dataset
for training the classifier and the LLLO5 dataset for testing. The corresponding
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recall-precision curves for C4.5 and the BayesNet classifier are shown in the third
picture in Figure 2. While both datasets are independent (built for different bi-
ological subdomains and by different people), our approach shows good results.
This indicates that the current approach is applicable to different domains with-
out alterations, although further investigation is needed to back up this claim.
The third picture also shows the recall-precision curve for the subsequence ker-
nel method from [2] which is a state-of-the-art shallow parsing based approach
for relation extraction. Since the approach was evaluated on a different dataset
in [2], we used the implementation provided by the authors® and our datasets
to perform the experiment. The training is done with LibSVM? on the AImed
dataset and testing is done on the LLLO5 dataset. The results show that the
three methods are comparable, with a slight preference for our approach with
the BayesNet classifier, as it can keep up a very high precision of 84% for a recall
of up to 60%.

5 Conclusions and Future Work

Whereas existing approaches for protein interaction detection typically rely on
shallow parsing information, sometimes augmented with full parsing information,
we presented an approach based solely on full parsing information. More in
particular, we proposed a clean and generally applicable approach in which for
each sentence a feature vector is constructed that contains 12 features with
information on the dependency tree and 4 features with information on the
parse tree of the sentence. Next we fed these feature vectors as inputs to a C4.5
and a BayesNet classifier, as representatives of a rule induction and a statistical
learning algorithm. Using these standard data mining algorithms and no shallow
parsing or lexical information whatsoever, we were able to obtain results which
are comparable with state-of-the-art approaches for protein relation mining. This
result is promising since a method that uses only full parsing information does
not depend on specific interaction keywords and is less affected by the size and/or
the heterogenity of the training corpus.

As this paper presents work in progress, quite some ground remains to be
covered, including a more complete comparison with existing methods. Among
other things, it would be interesting to build an SVM model with our feature
vectors and compare the results with those of shallow and combined parsing
based approaches that rely on kernel methods as well. Furthermore, we intend
to look into detecting the agents and the targets of interactions, which would
allow us to do an independent evaluation on the LLL05 dataset as intended by
the LLL challenge. A final intriguing question is whether an augmentation with
shallow parsing information could increase the performance of our approach.

8 http://wuw.cs.utexas.edu/~razvan/code/ssk.tar.gz
9 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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