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t. Lexi
al varian
e in biomedi
al texts poses a 
hallenge to au-tomati
 protein relation mining. We therefore propose a new approa
hthat relies only on more general language stru
tures su
h as parsing anddependen
y information for the 
onstru
tion of feature ve
tors that 
anbe used by standard ma
hine learning algorithms in de
iding whether asenten
e des
ribes a protein intera
tion or not. As our approa
h is notdependent on the use of spe
i�
 intera
tion keywords, it is appli
ableto heterogeneous 
orpora. Evaluation on ben
hmark datasets shows thatour method is 
ompetitive with existing state-of-the-art algorithms forthe extra
tion of protein intera
tions.1 Introdu
tionStudying the intera
tions of proteins is an essential task in biomedi
al resear
h,so it 
omes as no surprise that a lot of e�ort is being devoted to the 
onstru
-tion of protein intera
tion knowledge bases. More and more relevant informationis be
oming available on the web, in parti
ular in literature databases su
h asMEDLINE3, in ontologi
al resour
es su
h as the Gene Ontology4, and in spe-
ialized stru
tured databases su
h as IntA
t5. The unstru
tured information ins
ienti�
 publi
ations poses the biggest 
hallenge to biologists who are interestedin spe
i�
 gene or protein intera
tions, as they are for
ed to spend a tremen-dous amount of time reviewing arti
les looking for the information they need.Stru
tured knowledge bases are easier to query, but again require a great dealof knowledge and labour intensive maintenan
e to stay syn
hronized with thelatest resear
h �ndings in mole
ular biology. Automation tools 
an fa
ilitate thistask, whi
h is why ma
hine learning te
hniques for information extra
tion (IE)in the biomedi
al domain have gained a lot of attention over the last years.3 http://www.n
bi.nlm.nih.gov/4 http://www.geneontology.org/5 http://www.ebi.a
.uk/inta
t/site/index.jsf



Relation extra
tion from texts is one of the most diÆ
ult tasks of IE. In nat-ural language, relations 
an be expressed in di�erent ways, hen
e no universal setof rules or patterns for mining them 
an be 
onstru
ted. Traditional algorithmsfor relation learning from texts 
an perform reasonably well (see e.g. [1, 2, 5, 12℄),but they typi
ally rely expli
itly or impli
itly on spe
i�
 intera
tion keywords,whi
h limits their appli
ability to heterogeneous data. The biggest obsta
le withheterogeneous datasets is that they des
ribe protein intera
tions using di�erentlexi
ons. However, entirely di�erent surfa
e representations for intera
tions 
anstill exhibit the same synta
ti
 pattern. We therefore propose to abstra
t frompure lexi
al data and to 
on
entrate only on more general language stru
turessu
h as parsing and dependen
y information. This 
oarser grained approa
h al-lows to 
ope better with the lexi
al varian
e in the data. Indeed, taking the fa
tinto a

ount that lexi
ally di�erent expressions of protein intera
tions might stillbear some resemblan
e on the synta
ti
 level provides wel
ome hints for ma
hinelearning te
hniques that 
ommonly thrive on similarities in the data.The resulting system is a mining tool that fa
ilitates information extra
tionand knowledge base maintenan
e by presenting to the user protein intera
tionsidenti�ed in s
ienti�
 texts. The tool aims at supporting biologists in �nding rel-evant information, rather than to ex
lude them entirely from the data pro
essing
ow. After reviewing related approa
hes in Se
tion 2, we give a detailed des
rip-tion of the proposed method in Se
tion 3. Abstra
ting from pure lexi
al dataand only relying on synta
ti
 patterns instead bears the risk of overgeneraliz-ing, in the sense that senten
es that do not des
ribe protein intera
tions mightexhibit a synta
ti
 stru
ture similar to those that do, and hen
e they might getin
orre
tly identi�ed as protein intera
tions. To verify the reliability of our ap-proa
h we therefore evaluated it on two ben
hmark datasets. The experimentalresults and a 
omparison with existing algorithms are des
ribed in Se
tion 4.Con
luding remarks and future work are presented in Se
tion 5.2 Related WorkThe extra
tion of protein relations has attra
ted a lot of attention during the lastyears, resulting in a range of di�erent approa
hes. The �rst step is the re
ognitionof the protein names themselves (see e.g. [3, 6, 15℄). As the fo
us of this paperis on the mining of intera
tions, we assume that protein name re
ognition hasalready taken pla
e. The re
ognition of protein intera
tions is typi
ally treated asa 
lassi�
ation problem: the 
lassi�er gets as input information about a senten
e
ontaining two protein names and de
ides whether the senten
e des
ribes ana
tual intera
tion between those proteins or not. The 
lassi�er itself is builtmanually or, alternatively, it is 
onstru
ted automati
ally using an annotated
orpus as training data. The di�erent approa
hes 
an be distinguished basedon the information they feed to the 
lassi�er: some methods use only shallowparsing information on the senten
e while others exploit full parsing information.Shallow parsing information in
ludes part-of-spee
h (POS) tags and lexi
alinformation su
h as lemmas (the base form of words o

uring in the senten
e)



and orthographi
 features (
apitalization, pun
tuation, numerals et
.). In [2℄, asupport ve
tor ma
hine (SVM) model is used to dis
over protein intera
tions. Inthis approa
h ea
h senten
e is split into three parts | before the �rst protein,between the two proteins and after the se
ond protein. The kernel fun
tionbetween two senten
es is 
omputed based on 
ommon sequen
es of words andPOS tags. In another approa
h [5℄, this kernel fun
tion is modi�ed to treat thesame parts of the senten
e as bags-of-words and 
alled a global 
ontext kernel.It is 
ombined with another kernel fun
tion 
alled a lo
al 
ontext kernel, thatrepresents a window of limited size around the protein names and 
onsiders POS,lemmas, and orthographi
 features as well as the order of words. The resultingkernel fun
tion in this 
ase is a linear 
ombination of the global 
ontext kernel,and the lo
al 
ontext kernel.A 
ompletely di�erent approa
h is presented in [12℄, where very high re
alland pre
ision rates are obtained by means of hand-
rafted rules for senten
esplitting and protein relation dete
tion. The rules are based on POS and keywordinformation, and they were built and evaluated spe
i�
ally for Es
heri
hia 
oliand yeast domains. It is questionable, however, whether 
omparable results 
ouldbe a
hieved in di�erent biologi
al domains and how mu
h e�ort would be neededto adapt the approa
h to a new domain. In another approa
h reported on in [8℄, asystem was built spe
i�
ally for the LLL 
hallenge (see Se
tion 4). First, trainingset patterns are built by means of pairwise senten
e alignment using POS tags.Next, a geneti
 algorithm is applied to build several �nite state automata (FSA)that 
apture the relational information from the training set.Besides the methods des
ribed above, approa
hes have been proposed thataugment shallow parsing information with full parsing information, i.e. synta
ti
information su
h as full parse and dependen
y trees. In [4℄ for instan
e, forevery senten
e 
ontaining two protein names a feature ve
tor is built 
ontainingterms that o

ur in the path between the proteins in the dependen
y tree ofthe senten
e. These feature ve
tors are used to train an SVM based 
lassi�erwith a linear kernel. More 
omplex feature ve
tors are used in [10℄, where thelo
al 
ontexts of the protein names, the root verbs of the senten
e, and theparent of the protein nodes in the dependen
y tree are taken into a

ount by aBayesNet 
lassi�er. In [7℄, synta
ti
 information prepro
essing, hand-made rules,and a domain vo
abulary are used to extra
t gene intera
tions. The approa
hin [17℄ uses predi
ate-argument stru
tures (PAS) built from dependen
y trees.As surfa
e variations may exhibit the same PAS, the approa
h aims at ta
klinglexi
al varian
e in the data. It is tailored towards the AImed dataset (see Se
tion4) for whi
h 5 
lasses of relation expression templates are prede�ned manually.The 
lasses are automati
ally populated with examples of PAS patterns andprotein intera
tions are identi�ed by mat
hing them against these patterns.To the best of our knowledge, all existing work either uses only shallowparsing information (in
luding lexi
al information) or a 
ombination of shallowand full parsing information. Furthermore, approa
hes of the latter kind typi
allyuse dependen
y trees only as a means to e.g. dete
t 
hunks or to extra
t relevantkeywords. The goal of this paper is to investigate what 
an be a
hieved using



only full parsing information. In other words, the full parsing information isnot used as a means to sele
t whi
h further (lexi
al) information to feed to the
lassi�er, but it is used as a dire
t input itself to the 
lassi�er. The fa
t that su
han approa
h is independent of the use of a spe
i�
 lexi
on makes it worthwhileto investigate.3 DEEPER: a Dependen
y and Parse Tree basedRelation Extra
torThere is an abundan
e of ways in English to express that proteins stimulate orinhibit one another, and the available annotated 
orpora on protein intera
tions
over only a small part of them. In other words, when the intera
tion mining toolis 
onfronted with a previously unseen text, it is likely for this text to 
ontainprotein intera
tions des
ribed in ways for whi
h there is no exa
t mat
hingexample in the training data. However, di�erent surfa
e representations 
an stillexhibit a similar synta
ti
 pattern, as the following example illustrates.Example 1. Consider the following senten
es about the intera
tion between sig-ma F and sigma E in one 
ase and between GerE and 
otB in the other 
ase:Sigma F a
tivity regulates the pro
essing of sigma E within the mother
ell 
ompartment.A low GerE 
on
entration, whi
h was observed during the experiment,a
tivated the trans
ription of 
otB by �nal sigmaK RNA polymerase,whereas a higher 
on
entration was needed to a
tivate trans
ription of
otX or 
otC.Although the surfa
e representations are very di�erent, the underlying synta
ti
pattern, whi
h represents part of a dependen
y tree, is the same in both 
ases:protein nn noun nsubj verb dobj! noun prep of! proteinWe exploit this deeper similarity between training instan
es by using depen-den
y and parsing information to build abstra
t representations of intera
tions.Su
h representations have less varian
e than the initial lexi
al data, hen
e sen-sible results 
an be obtained from smaller training datasets. The approa
h isfully automati
al and 
onsists of three stages: after a text prepro
essing stage,for every senten
e 
ontaining two tagged protein names, we 
onstru
t a featureve
tor summarizing relevant information on the parse tree and the dependen
ytree. In the third stage a 
lassi�er is trained to re
ognize whether the senten
edes
ribes an a
tual intera
tion between the proteins. The novelty of the approa
hw.r.t. existing work is that we do not use dependen
y data to dete
t keywords,but we 
onsider dependen
ies as features themselves. In the next se
tion we showthat using only this kind of synta
ti
 information without any lexi
al data allowsto obtain reasonably good results.



Text prepro
essing This step is intended to simplify the senten
e stru
ture andhen
e in
rease the parser reliability. It in
ludes senten
e splitting as well as thedete
tion and the substitution of 
omplex utteran
es (e.g. 
hemi
al formulasor 
onstru
tions with many parentheses) with arti�
ial strings, whi
h in some
ases 
an otherwise signi�
antly redu
e the quality of parsing. Furthermore, weexpand repeating stru
tures, turning e.g. `sigA- and sigB-proteins' or `sigA/sigB-proteins' into 'sigA-proteins and sigB-proteins'. All substitutions are done auto-mati
ally by means of regular expressions; hen
e the same kind of prepro
essing
an be applied to an arbitrary text. Moreover, tagged protein names in the textmay in
lude more than one word; in order to treat them as a single entity infurther pro
essing stages, we repla
e them in the same manner as formulas. Fi-nally, we take all possible pairwise 
ombinations of proteins in ea
h senten
e and
reate one senten
e for ea
h 
ombination where only this 
ombination is tagged.Part of this pro
ess is shown in Example 2.Example 2. Below is the result after text prepro
essing for the se
ond senten
efrom Example 1:A low GerE 
on
entration, whi
h was observed during the experiment,a
tivated the trans
ription of 
otB by �nal sigmaK RNA polymerase,whereas a higher 
on
entration was needed to a
tivate trans
ription of
otX or 
otC.. . .A low GerE 
on
entration, whi
h was observed during the experiment,a
tivated the trans
ription of 
otB by �nal sigmaK RNA polymerase,whereas a higher 
on
entration was needed to a
tivate trans
ription of
otX or 
otC.Feature ve
tor 
onstru
tion After the text prepro
essing stage, for ea
h senten
ewe build a feature ve
tor that summarizes important synta
ti
 information onthe parse tree and the typed dependen
y tree, whi
h are both ways of repre-senting senten
e stru
ture. A parse tree is a tree (in terms of graph theory) thatrepresents the synta
ti
al stru
ture of a senten
e. Words from the senten
e areleaves of the parse tree and synta
ti
al roles are intermediate nodes, so a parsetree represents the nesting stru
ture of multi-word 
onstituents. A dependen
ytree on the other hand represents inter
onne
tions between individual words ofthe senten
e. Hen
e, all nodes of the dependen
y tree are words of the senten
e,and edges between nodes represent synta
ti
 dependen
ies. In typed dependen
ytrees, edges are labeled with synta
ti
 fun
tions (e.g., subj, obj). Figure 1 depi
tsthe typed dependen
y tree and parse tree for the �rst senten
e of Example 1.During the feature extra
tion phase we parse ea
h senten
e with the StanfordParser6. For ea
h tagged pair of proteins (re
all that ea
h senten
e has onlyone su
h pair), we extra
t a linked 
hain [14℄ from the dependen
y tree. Thedependen
y tree is unordered w.r.t. the order of the words in the senten
e; hen
eto produ
e patterns uniformly, we order the bran
hes in the linked 
hain based6 http://nlp.stanford.edu/downloads/lex-parser.shtml



Fig. 1. Dependen
y and parse trees and linked 
hain for the �rst senten
e of Ex. 1.on the position of the words in the initial senten
e. Thus the left bran
h 
ontainsthe word that o

urs earlier in the senten
e and the right bran
h the word thato

urs later. The absolute majority of the bran
hes in the linked 
hains from thedatasets we examined 
ontain no more than 6 edges, and those whi
h 
ontainmore are negative instan
es, so we 
hoose feature ve
tors with 6 features for ea
hbran
h to 
over all positive examples from the training set. Therefore, we usethe �rst 6 dependen
ies from the left bran
h as the �rst 6 features in the featureve
tor. Likewise, the �rst 6 dependen
ies from the right bran
h 
orrespond tofeatures 7 through 12. Moreover, to better des
ribe the stru
ture of the relationwe in
orporate information from the parse tree as well, namely the length of thepath from the root of the parse tree to ea
h protein as the 13th and the 14thfeature, and the number of nested subsenten
es in these paths as the 15th andthe 16th feature.Example 3. Below is the feature ve
tor of the �rst senten
e from Example 1:nsubj nn dobj prep of 4 7 0 0We extra
t a linked 
hain between the two proteins, as shown in Figure 1. It isalready ordered, i.e. Sigma F pre
edes Sigma E in the senten
e, so we do notneed to swap these bran
hes. We take the left bran
h and �ll the �rst 6 featuresof the feature ve
tor. As the bran
h 
ontains only 2 dependen
ies | nsubj and



nn, 4 slots in the ve
tor remain empty. Features 7-12 for the right bran
h are�lled in the same manner. Sigma F is at depth 4 in the parse tree while Sigma Eis at depth 7, and the parse tree in Figure 1 does not 
ontain subsenten
es. Allthis information is re
e
ted in the last 4 features of the ve
tor. Note that theresulting feature ve
tor 
ontains several empty �elds; only the most 
ompli
atedsenten
es will have a value for ea
h feature in the ve
tor.Training a 
lassi�er By the above pro
ess, we obtain a set of feature ve
tors forsenten
es whi
h 
an be divided into two 
lasses| those that des
ribe real proteinintera
tions and those that do not. Therefore, we 
an use a standard 
lassi�
ationalgorithm to distinguish between these two 
lasses. To build the 
lassi�er, we usea de
ision tree algorithm (C4.5 implementation [13℄) and the BayesNet 
lassi�er[9℄. These two algorithms represent 
lassi
al instan
es of two bran
hes of ma
hinelearning | rule indu
tion and statisti
al learning | whi
h employ di�erentapproa
hes to data pro
essing. De
ision trees 
onsist of internal nodes whi
hrepresent 
onditions on feature values, and leaves whi
h represent 
lassi�
ationde
isions that 
onform to the feature values in nodes on the way to this leaf.The BayesNet 
lassi�er is represented as a dire
ted graph with a probabilitydistribution for ea
h feature in the nodes and with the edges denoting 
onditionaldependen
ies between di�erent features. When we use the BayesNet 
lassi�er weapply a 
onditional independen
e assumption, whi
h means that probabilities ofnode values depend only on probabilities of values of their immediate parents,and do not depend on higher an
estors. This 
orresponds to the reasonableassumption that the synta
ti
 role of a node in the linked 
hain depends on thesynta
ti
 role of its parent only.To over
ome the problem of missing values (whi
h o

ur frequently in thefeature ve
tors), in the BayesNet 
lassi�er we simply 
hange them by a defaultvalue. With C4.5, to 
lassify an instan
e that have a missing value for a givennode, the instan
e is weighted proportionally to the number of instan
es thatgo down to ea
h bran
h, and re
ursively pro
essed on ea
h 
hild node w.r.t. toassigned weight. This pro
ess is des
ribed in more detail in [16℄.4 Experimental EvaluationTo verify the reliability of our approa
h, we evaluated it on two datasets. The�rst dataset [11℄ originates from the Learning Language in Logi
 (LLL) relationmining 
hallenge on Geni
 Intera
tion Extra
tion7. This dataset 
ontains anno-tated protein/gene intera
tions 
on
erned with Basili
us subtilis trans
ription.The senten
es in the dataset do not make up a full text, but they are individualsenten
es taken from several abstra
ts retrieved from Medline. The proteins in-volved in the intera
tions are annotated with agent and target roles; be
ause our
urrent approa
h is not aimed at mining the dire
tion of intera
tions, we ignorethis annotated information and treat the intera
tions as symmetri
al relations.7 http://genome.jouy.inra.fr/texte/LLL
hallenge/



The AImed dataset [1℄ is 
ompiled from 197 abstra
ts extra
ted from theDatabase of Intera
ting Proteins (DIP) and 28 abstra
ts whi
h 
ontain proteinnames but do not 
ontain intera
tions. Sin
e we are interested in retrievingprotein intera
tions, in this paper we use only the former set of abstra
ts. The
onne
tion between a full name of a protein and its abbreviation, e.g. tumorne
rosis fa
tor (TNF), is annotated as an intera
tion in the AImed dataset.Sin
e su
h an annotation is not 
on
erned with an a
tual intera
tion betweendi�erent proteins, we omit this kind of data from our experiments. Furthermorewe removed nested protein annotations, whi
h wrap around another protein orintera
tion annotation. Finally, TI- and AD- se
tions as well as PG- pre�xes,whi
h are Medline artifa
ts, were removed.More information about the datasets is listed in Table 1. From this table,it is 
lear that the AImed dataset is highly imbalan
ed, as there is a strongbias to negative examples. To the best of our knowledge, these are the onlytwo publi
ly available datasets 
ontaining annotations of protein intera
tionsand hen
e suitable to evaluate our approa
h. In the evaluation we used 10-foldTable 1. Datasets used in the experimentsDataset # senten
es # positive instan
es # negative instan
esAImed 1978 816 3204LLL'05 77 152 233
ross validation for both the AImed and the LLL05 dataset; furthermore we ranexperiments with AImed as training set and LLL05 as test set. We used Weka[16℄ for the implementation of the ma
hine learning methods.The di�eren
e in the datasets requires di�erent parameters to a
hieve optimalperforman
e. As we have mentioned above, the AImed dataset is imbalan
edand using it for training tends to lead to a bias towards 
lassifying examples asnegative (independently of the training s
heme). For this reason, we use 
ost-sensitive learning [16℄ to de
rease the bias when AImed is used as a training set.Moreover, in the C4.5 implementation for the AImed dataset, we build a binaryde
ision tree, i.e. at ea
h node the algorithm tests only one value of one feature.Otherwise, the algorithm would de
ide that the empty tree 
lassi�es the datasetin the best way, and all examples would be 
lassi�ed as negative (again, be
auseof the biased dataset).The results below are des
ribed in terms of the senten
es that are (in)
orre
tlyidenti�ed by the system as des
ribing a protein intera
tion, as these are exa
tlythe instan
es that the system will present to the biologist. The relevant instan
esare the senten
es that should have been identi�ed as des
ribing protein intera
-tions; this in
ludes the true positives, i.e. the positive instan
es that are 
orre
tlyidenti�ed by the system, but also the false negatives, i.e. the positive instan
esthat are overlooked by the system. The retrieved instan
es are the senten
es



that are identi�ed by the system as des
ribing protein rea
tions. This in
ludesthe true positives but may also in
lude false positives, i.e. senten
es in
orre
tlyidenti�ed by the system as des
ribing a protein intera
tion. Using TP, FN, andFP to denote the number of true positives, false negatives, and false positivesrespe
tively, re
all and pre
ision are de�ned asre
all = TPTP+ FN pre
ision = TPTP+ FPRe
all (also referred to as 
overage) indi
ates how many of the relevant instan
esare retrieved. Pre
ision (also referred to as a

ura
y) indi
ates how many of theretrieved instan
es are relevant.To study the trade-o� between re
all and pre
ision we use a 
on�den
ethreshold p between 0 and 1 su
h that an instan
e is retrieved i� the 
lassi-�er has a 
on�den
e of at least p that the instan
e des
ribes a real proteinintera
tion. The BayesNet 
lassi�er provides su
h a 
on�den
e value naturally,be
ause its output is a 
lass distribution probability for ea
h instan
e. De
isiontrees 
an also be easily adapted to produ
e a probabilisti
 output by 
ountingtraining examples at the leaf nodes. If a senten
e that is being 
lassi�ed endsup at a leaf node, the 
on�den
e of the 
lassi�er that it is a positive instan
e, isthe proportion of positive training examples to all training examples at that leafnode. When p is set to 1, a senten
e is only retrieved if the 
lassi�er has absolute
on�den
e that it des
ribes a protein intera
tion. In this 
ase typi
ally the pre
i-sion is high while the re
all is low. De
reasing the threshold p allows to in
reasethe re
all at the 
ost of a drop in the pre
ision. Figure 2 shows re
all-pre
ision
urves obtained by varying p from 1 to 0.As the �rst pi
ture depi
ts, both 
lassi�ers allow to obtain similarly ni
eresults for the LLL05 dataset, whi
h is a �rst indi
ation that we 
an make rea-sonable predi
tions about the o

urren
e of protein intera
tions in senten
esbased solely on full parsing information. Several authors present results of theirprotein relation extra
tion methods on the LLL05 dataset. However, sin
e our
urrent approa
h is not aimed at identifying agent and target roles in the in-tera
tions, we 
an only 
ompare our results with those methods that treat theintera
tions as symmetri
al relations. The �rst pi
ture in Figure 2 shows a resultfrom [7℄ depi
ted by a � and 
orresponding to a re
all of 85% and a pre
ision of79%. One should keep in mind that the method from [7℄ uses hand-made rulesand a domain vo
abulary, while our approa
h does not employ any prespe
i-�ed knowledge. However, results show that our approa
h with a C4.5 
lassi�era
hieves results whi
h are very 
lose to the ones obtained by RelEx.Whereas the LLL05 dataset 
ontains only sele
ted senten
es from Medlineabstra
ts, the AImed dataset 
ontains full abstra
ts, posing a bigger 
hallengeto our approa
h. The se
ond pi
ture in Figure 2 shows that C4.5 and BayesNetallow to obtain 
omparable results in terms of re
all and pre
ision. They bothoutperform the PAS-approa
h for whi
h a re
all of 33.1% for a pre
ision of 33.7%is reported in [17℄.Finally, we performed a 
ross dataset experiment using the AImed datasetfor training the 
lassi�er and the LLL05 dataset for testing. The 
orresponding



Fig. 2. Re
all-pre
ision 
harts



re
all-pre
ision 
urves for C4.5 and the BayesNet 
lassi�er are shown in the thirdpi
ture in Figure 2. While both datasets are independent (built for di�erent bi-ologi
al subdomains and by di�erent people), our approa
h shows good results.This indi
ates that the 
urrent approa
h is appli
able to di�erent domains with-out alterations, although further investigation is needed to ba
k up this 
laim.The third pi
ture also shows the re
all-pre
ision 
urve for the subsequen
e ker-nel method from [2℄ whi
h is a state-of-the-art shallow parsing based approa
hfor relation extra
tion. Sin
e the approa
h was evaluated on a di�erent datasetin [2℄, we used the implementation provided by the authors8 and our datasetsto perform the experiment. The training is done with LibSVM9 on the AImeddataset and testing is done on the LLL05 dataset. The results show that thethree methods are 
omparable, with a slight preferen
e for our approa
h withthe BayesNet 
lassi�er, as it 
an keep up a very high pre
ision of 84% for a re
allof up to 60%.5 Con
lusions and Future WorkWhereas existing approa
hes for protein intera
tion dete
tion typi
ally rely onshallow parsing information, sometimes augmented with full parsing information,we presented an approa
h based solely on full parsing information. More inparti
ular, we proposed a 
lean and generally appli
able approa
h in whi
h forea
h senten
e a feature ve
tor is 
onstru
ted that 
ontains 12 features withinformation on the dependen
y tree and 4 features with information on theparse tree of the senten
e. Next we fed these feature ve
tors as inputs to a C4.5and a BayesNet 
lassi�er, as representatives of a rule indu
tion and a statisti
allearning algorithm. Using these standard data mining algorithms and no shallowparsing or lexi
al information whatsoever, we were able to obtain results whi
hare 
omparable with state-of-the-art approa
hes for protein relation mining. Thisresult is promising sin
e a method that uses only full parsing information doesnot depend on spe
i�
 intera
tion keywords and is less a�e
ted by the size and/orthe heterogenity of the training 
orpus.As this paper presents work in progress, quite some ground remains to be
overed, in
luding a more 
omplete 
omparison with existing methods. Amongother things, it would be interesting to build an SVM model with our featureve
tors and 
ompare the results with those of shallow and 
ombined parsingbased approa
hes that rely on kernel methods as well. Furthermore, we intendto look into dete
ting the agents and the targets of intera
tions, whi
h wouldallow us to do an independent evaluation on the LLL05 dataset as intended bythe LLL 
hallenge. A �nal intriguing question is whether an augmentation withshallow parsing information 
ould in
rease the performan
e of our approa
h.8 http://www.
s.utexas.edu/�razvan/
ode/ssk.tar.gz9 http://www.
sie.ntu.edu.tw/�
jlin/libsvm/
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