While persuasion has been extensively examined in the context of politicians’ speeches, there exists a notable gap in the understanding of the pathos role in user-generated argumentation. This paper presents an exploratory study into the pathos dimension of user-generated arguments and formulates ideas on how pathos could be incorporated in argument mining. Using existing sentiment and emotion detection tools, this research aims to obtain insights into the role of emotion in argumentative public discussion on controversial topics, explores the connection between sentiment and stance, and detects frequent emotion-related words for a given topic.