Dynamic adaptation of neural machine-translation systems through translation exemplars

Publication type
C1
Publication status
Published
Author
Tezcan, A.
Editor
Lieve Macken, Andrew Rufener, Joachim Van den Bogaert, Joke Daems, Arda Tezcan, Bram Vanroy, Margot Fonteyne, Loïc Barrault, Marta R. Costa-jussà, Ellie Kemp, Spyridon Pilos, Christophe Declercq, Maarit Koponen, Mikel L. Forcada, Carolina Scarton and Helena Moniz
Series
Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
Pagination
283-284
Publisher
European Association for Machine Translation (Ghent, Belgium)
Conference
23rd Annual Conference of the European Association for Machine Translation (Ghent, Belgium)
Download
(.pdf)
View in Biblio
(externe link)

Abstract

This project aims to study the impact of adapting neural machine translation (NMT) systems through translation exemplars, determine the optimal similarity metric(s) for retrieving informative exemplars, and, verify the usefulness of this approach for domain adaptation of NMT systems.