Whereas post-edited texts have been shown to be either of comparable quality to human translations or better, one study shows that people still seem to prefer human-translated texts. The idea of texts being inherently different despite being of high quality is not new. Translated texts, for example,are also different from original texts, a phenomenon referred to as ‘Translationese’. Research into Translationese has shown that, whereas humans cannot distinguish between translated and original text,computers have been trained to detect Translationesesuccessfully. It remains to be seen whether the same can be done for what we call Post-editese. We first establish whether humans are capable of distinguishing post-edited texts from human translations, and then establish whether it is possible to build a supervised machine-learning model that can distinguish between translated and post-edited text.