This paper describes the submission of the UGENT-LT3 SCATE system to the WMT16 Shared Task on Quality Estimation (QE), viz. English-German word and sentence-level QE. Based on the observation that the data set is homogeneous (all sentences belong to the IT domain), we performed bilingual terminology extraction and added features derived from the resulting term list to the well-performing features of the word-level QE task of last year. For sentence-level QE, we analyzed the importance of the features and based on those insights extended the feature set of last year. We also experimented with different learning methods and ensembles. We present our observations from the different experiments we conducted and our submissions for both tasks.